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Pulsed squeezed-light generation
in x (2) nonlinear waveguides
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We present a brief history of experimental studies of quadrature squeezing, a tutorial on the physical origin
and theory of squeezing, and our experimental study of squeezing by means of x (2) (second-order) nonlinear
waveguides. We recently obtained 28% squeezing in quasi-phase-matched LiTaO3 waveguides, using picosec-
ond pulses. The amount of squeezing appears to be limited primarily by blue-light-induced red absorption.
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1. INTRODUCTION
Years after its first observation, squeezed light is still the
premiere vehicle for demonstrating the importance of
quantum mechanics in nonlinear optics; it is an inher-
ently nonclassical light field that eludes explanation by
classical physics. Current progress in squeezing is being
fueled by advances in nonlinear devices and in measure-
ment theory and techniques. In this paper we review the
history and physics of squeezed light, discuss the advan-
tages of generating squeezed light in optical waveguides,
and present our experimental results on pulsed squeezing
in quasi-phase-matched second-order nonlinear optical
waveguides.

Quadrature field squeezing is a general concept that
applies to electromagnetic signals with the measured
variance of a particular quadrature amplitude lying below
the corresponding shot-noise-limited variance associated
with a coherent field. The conjugate quadrature ampli-
tude undergoes an increase in variance beyond the shot-
noise level. The motivation for applications of squeezed
light originated with the idea that, when it is using the
reduced variance of a squeezed signal, a measurement ap-
paratus would be more sensitive than the standard quan-
tum limit of an ordinary coherent state. The relatively
modest amounts of squeezing obtained to date, though,
combined with the huge amount of effort involved, have
severely hampered fulfillment of squeezed light’s antici-
pated capabilities. Fortunately, optical waveguides ap-
pear to offer a technique for easily generating large
amounts of highly squeezed light.

2. CHRONOLOGY
The starting point for a discussion of the theoretical de-
velopment of squeezed states originates with coherent
states, originally alluded to by Schrödinger.1 The impe-
tus for a rigorous quantum-mechanical treatment of co-
herent electromagnetic states, however, lagged Schröd-
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inger’s notion by more than 30 years, until the advent of
the laser and quantum optics. In the early 1960’s
Glauber2 recognized that the traditional basis states used
to describe the harmonic oscillator, the number states,
were lacking in simplicity for describing the optical states
of the laser. He developed the coherent state, an eigen-
state of the annihilation operator, which has equal uncer-
tainties in each quadrature. The quadrature amplitudes
Q and P are the real and the imaginary parts, respec-
tively, of the electric-field amplitude, E } Q 1 iP, and
therefore represent the two phase components of the os-
cillating wave, that is, Re E exp(2ivt) 5 Q cos vt
1 P sin vt.

Subsequently, it was discovered that the coherent-state
description was not, in fact, general enough. To describe
states of unequal quadrature uncertainties required de-
velopment of a new formalism. These new states, iden-
tified by a variety of names, eventually became known as
squeezed states.3 Building on studies by Louisell et al.,4

who analyzed parametric processes, Takahasi5 considered
the use of squeezed states for optical communication in
his quantum analysis of the parametric amplifier, calling
them simply ‘‘wave packets.’’ Squeezed states under-
went further theoretical development by Stoler,6 who
showed that minimum-uncertainty packets can be ob-
tained by unitary transformation of the coherent states.
Yuen7 formulated a complete theory of squeezing and so-
lidified its position in the mainstream of quantum optics,
referring to these states as ‘‘two-photon coherent states.’’
Caves8 proposed increasing the sensitivity of interferom-
eters by injecting squeezed light.

In 1985 a team from Bell Laboratories9 led by Slusher
found the first experimental evidence of squeezing by us-
ing a four-wave mixing process induced by the x (3) non-
linear susceptibility of a sodium atomic beam. The
amount of squeezing (25%) was modest. Soon thereafter
squeezing was observed in several different media [x (2)

and x (3)] and geometries (traveling-wave, intracavity, op-
1997 Optical Society of America
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tical fibers). In Table 1 we present a (semicomplete) his-
tory of quadrature squeezing experiments, an extension
of a list given earlier in a review by Kimble.44 In the
table we indicate the reference, the system that was used
(where we allude to the novelty of each experiment), and
the amount of squeezing, given in percent of intensity-
noise variance below the shot-noise level, with 100% indi-
cating perfect squeezing (zero noise).

3. OPTICAL WAVEGUIDES
The motivation for creating squeezed light by traveling-
wave parametric amplification in waveguides is the po-
tential to benefit from the high pump intensity that re-
sults from the transverse confinement and from the
possibility of spatial mode control. In bulk crystals, sev-
eral problems hamper the available gain. In the linear-
gain (undepleted-pump) regime the diffractions of the

Table 1. History of Experimental
Quadrature Squeezing

Reference Systema Squeezing (%)

9 x (3), Na beam 25
10 x (3), fiber 13
11 x (2), subthreshold OPO 63
12 x (3), Na vapor 4
13 x (3), Na beam 30
14 x (3), four-mode 20
15 x (2), subthreshold OPO 37
16 x (2), pulsed squeezing 13
17 x (2), frequency doubling 13
18 x (2), subthreshold OPO 55
19 x (3), Na vapor 25
20 x (2), incoherent pulse 17
21 x (2), frequency doubling 40
22 x (2), Josephson parametric amplifier 47
23 x (2), pulsed squeezing 22
24 x (3), optical solitons 32
25 x (3), pulsed squeezing 68
26 x (3), Na, single-beam 17
27 x (2), self-matched LO 37
28 x (3), Ba beam 18
29 x (2), OPO, SHG 40
30 x (2), mode-locked OPO 30
31 x (2), pulsed, type I 34
32 x (2), subthreshold OPO 75
33 x (2), whole-pulse detection 30
34 x (3), two-pulse, fiber 50
35 x (3), low-power, fiber 37
36 x (3), gigahertz pump, fiber 69
37 x (2), self-matched LO 74
38 x (3), semiconductor ZnS 40
39 x (2), KTP waveguide 12
40 x (2), LiNbO3 waveguide 14
41 x (2), subthreshold OPO 72
42 x (3), semiconductor ZnSe 7
43 x (3), cold atoms 40

This work x (2), LiTaO3 waveguide 28

a OPO, optical parametric oscillator.
pump and signal beams differ because of the differing
wavelengths of the beams, so when the signal is created
spontaneously in the pump waist volume it diffracts more
strongly than does the pump. Furthermore, the two
phase quadratures of the signal field experience different
spatially dependent gains, leading to the introduction of
additional modes along with an accompanying loss of
squeezing (gain-induced diffraction).37,45 There are also
nonlinear mechanisms, including Kerr-lens @x (3)#
focusing,26 that can affect the transverse spatial profile of
the generated squeezed light. While these mechanisms
limit the squeezing achievable in bulk media with no
waveguiding, in a waveguide the transverse profile is de-
termined largely by the step-index changes rather than
by nonlinear optical index changes. The resulting mode
control leads to more-efficient interaction between signal
and pump fields and also produces a squeezed field in a
well-defined spatial mode. Consequently, mode match-
ing to a local-oscillator (LO) field, which is necessary to
detect the squeezing, is easier.

The main difficulty encountered in early x (3) squeezing
in optical-fiber waveguides was the presence of guided
acoustic wave Brillouin scattering (GAWBS) noise.
Thermal excitations in the fiber cause index-of-refraction
modulations, which add phase-noise sidebands to the
pump light and effectively suppress the squeezing pro-
cess. Recently Bergman et al.36 discovered a way to
avoid GAWBS noise by using a high-repetition-rate short-
pulse laser. If the repetition rate of the laser is higher
than the GAWBS bandwidth, good squeezing can be ob-
tained between the GAWBS spectral peaks if such peaks
are fortuitously placed in frequency. Furthermore, the
use of short pulses, as originally demonstrated by Slusher
et al.16 to increase peak power, helps to overcome the
GAWBS problem because the GAWBS noise scales as the
average power in the beam, whereas the squeezing scales
with the peak power in the individual pulses. Ho et al.46

have proposed x (3) squeezing in semiconductor
waveguides below half-band-gap to further reduce these
and other limitations. The observation of squeezing in a
bulk semiconductor below half-band-gap by Fox et al.38 is
an encouraging step in this direction.

Squeezing in x (2) waveguides, in which the medium po-
larization is quadratic in the field strength, promises sev-
eral advantages compared with x (3) waveguides, in which
the polarization is cubic in the field. x (2) waveguides
eliminate the masking of squeezing by GAWBS noise,
since the squeezing appears at half the optical frequency
of the pump. This phenomenon was first pointed out and
studied theoretically by Kumar.47 Furthermore, many
materials have much higher x (2) than x (3) nonlinearity,
which permits the use of a much shorter gain medium (1
cm, compared with tens of meters). A shorter medium
leads to less GAWBS noise as well as to less self-phase
modulation of the pulsed fields, another mechanism that
degrades squeezing in x (3) media.46 Nevertheless, there
is a practical disadvantage in using x (2) media—the need
to generate a LO field for detecting squeezing at one half
the pump frequency. Efficient x (2) waveguide frequency
doublers48 can help solve this problem.

Methods for the generation of good amounts of squeez-
ing seem to be well understood. The difficulty lies in the
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detection of squeezing. High detection efficiency is es-
sential to avoid losses of photons and thus of the correla-
tions that give rise to squeezing.44 There are several fac-
tors that go into overall detection efficiency, the first of
which is the quantum efficiency of the detectors them-
selves. Currently available silicon photodiodes can have
efficiencies approaching unity.44 The second consider-
ation in detection is mode matching between the signal
and LO fields. Squeezed-field quadratures are measured
by balanced-homodyne detection,49,50 in which the
squeezed beam is interfered with a reference (LO) beam
and is then detected. Good spatial and temporal mode
overlap is essential to facilitate the field interference that
transfers the squeezing correlations of the signal into a
reduction of noise on the LO. In a waveguide the spatial
mode is defined by the waveguide itself; thus one can op-
timize the spatial mode matching, as Kumar originally
pointed out, by passing the LO through an identical
waveguide.47

When one is using pulses, the temporal mode overlap is
slightly more complicated. It was predicted early on by
Yurke et al.51 that, to maximize the detected squeezing,
the LO should be as short as possible to overlap the peak
of the squeezed signal (see also Smithey et al.52 and Ho
et al.46). This theory was later refined by Werner et al.,53

who included the less than infinite phase-matching band-
width for squeezed-light generation. They found that for
optimum squeezing detection the LO pulse should be
shorter than the duration of the pump pulse that gener-
ates the squeezed light but not so short that its spectrum
is wider than that of the squeezed field (which is usually
determined by the phase-matching bandwidth). This
point typically becomes significant only when ultrashort-
pulse (,;10-fs) lasers are used.54 Werner et al. also de-
scribe how to tailor the temporal structure of the LO
pulse to compensate for the linear dispersion that is
present in the x (2) medium. LO compensation for nonlin-
ear dispersion in a x (3) medium is discussed by Ho et al.46

Squeezing in x (2) waveguides was achieved recently39

with ultrashort pulses in quasi-phase-matched KTP
waveguides55 and shortly thereafter in quasi-phase-
matched LiNbO3 waveguides by Serkland et al.40 Quasi-
phase matching (QPM) permits access to the large d33
@d 5 x (2)/2# nonlinearity that cannot be utilized in crys-
tals that are phase matched by birefringence (d33 requires
that all fields be polarized in the same direction). Addi-
tionally, QPM makes accessible a wider range of wave-
lengths for parametric interactions than is found in the
bulk case. Despite these advantages, several problems
hampered each of these experiments, limiting the ob-
tained squeezing to modest amounts (12% and 14%, re-
spectively). In the former experiment the waveguides
were not single mode, preventing proper spatial mode
matching with the LO. In the latter, two-photon absorp-
tion (TPA) limited the pump energy and the squeezing
gain. Both experiments confirmed the absence of gain-
induced diffraction, however, removing one of squeezing’s
upper limits applicable in bulk media. Amplitude
squeezing (15%) was recently demonstrated in quasi-
phase-matched LiNbO3 waveguides by means of
traveling-wave second-harmonic generation56 (SHG).

In the remainder of this paper we give a brief theoret-
ical treatment of squeezing and present our recent experi-
mental findings: 28% squeezing in quasi-phase-matched
LiTaO3 waveguides by use of picosecond pulses. We also
discuss the limitations imposed by TPA of the blue pump
and the associated blue-light-induced red absorption.

4. PHYSICS OF QUADRATURE SQUEEZING
Squeezed light has a rich history of theoretical treatment.
Our presentation here is by no means intended to be ex-
haustive. We merely want to present some of the more
subtle points of squeezing. For further consideration, a
good tutorial is given by Loudon and Knight.57 Here we
present a derivation of quadrature squeezing arising from
x (2) parametric amplification. The result that we obtain
is equivalent to a result presented by Yurke et al.,51 al-
though our approach differs slightly in that Yurke et al.
started from the nonlinear wave equation, whereas we
identify the nonlinear Hamiltonian and proceed via
Heisenberg’s equation of motion. To preserve generality
we approach the problem from a broadband starting
point, then ultimately restrict our results to the narrow-
band approximation. We do this in an effort to shed light
on the underlying quantum-mechanical nature of
squeezed light, a phenomenon that is intimately inter-
twined with the production of pairs of photons.

Squeezing can arise from the nonlinear optical re-
sponse of dielectric materials. In the analysis below, we
follow the derivation given by Boyd,58 generalizing it to
quantized fields. A nonlinear medium is characterized
by a polarization

P̃ 5 e0@x~1 !Ẽ 1 x~2 !Ẽ2 1 x~3 !Ẽ3...#, (1)

where P̃ is defined in SI units such that the nonlinear
susceptibility x (2) is given in units of meters per volt [see
Ref. 58, App. A]. The second-order susceptibility x (2) is
responsible for second-harmonic generation and paramet-
ric amplification. The third-order susceptibility x (3) con-
trols four-wave mixing and self-focusing. Here we derive
an equation of motion for the degenerate parametric am-
plifier (in a type I process, in which all light fields near vs
have the same polarization vector and propagate in the
same transverse mode). A signal field with frequency
near vs will interact with a pump field at frequency vp
(52vs) through the second-order susceptibility x (2). For
our derivation, however, we begin generally, writing the
electric field as a sum of frequency modes. This approach
will illustrate, we hope, the relationship between photon
pairs. That is, a photon at frequency vm will be produced
by a pump photon at vp only with the simultaneous pro-
duction of another photon at vn 5 vp 2 vm (the nonde-
generate case) to conserve energy (vm 1 vn 5 vp). In
the limit that vm → vp/2, the two photons produced will
have the same frequency (the degenerate case).

We can write the signal’s electric field as

Ẽs~z, t ! 5 Âs
~1!~z, t !exp~2ivst !exp~iksz !

1 Âs
~2!~z, t !exp~ivst !exp~2iksz !

5 (
n52`

`

Ê~vn!exp~2ivnt ! (2)
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and the monochromatic pump field as

Ẽp~z, t ! 5 Ê~vp!exp~2ivpt !1h.c. (3)

(the tilde indicates fast-oscillating quantities, and h.c.
stands for the Hermitian conjugate). Here Âs

(1) and Âs
(2)

represent the slowly varying envelopes of the positive-
and negative-frequency components, respectively, of the
electric field. We are seeking the functional dependence
of these envelope functions on space and time. We can
expand the envelope Âs

(1) in terms of photon annihilation
operators â j , obeying the commutator @ â j , âk

†# 5 d jk .
In SI units,

Âs
~1! 5 i(

j
L j â j~t !exp~2iV jt !exp~iKj z !, (4a)

Âs
~2! 5 @Âs

~1!#†, (4b)

where L j 5 (\v j/2e jV)1/2, V j 5 v j 2 vs , Kj 5 kj 2 ks ,
kj 5 njv j /c, and nj 5 Ae j /e0 is the index of refraction at
v j . We identify

Ê~vn! 5 iLnân~t !exp~iknz !, (5a)

noting that

Ê~2vn! 5 Ê†~vn!. (5b)

The interaction Hamiltonian Ĥ given by the field en-
ergy in the nonlinear medium is58

Ĥ 5 E
V

e0(
m

8 xm,p2m
~2 ! Ê†~vp!Ê~vm!Ê~vp2m!d3r 1 h.c.,

(6)

where xm,p2m
(2) 5 x (2)(vp , vm , vp2m) and the prime on

the summation indicates a sum over positive frequencies
only (m . 0).

The pump field in Ĥ is given by

Ê~vp! 5 exp~ikpz !Âp
~1! . (7)

Putting these results into the interaction Hamiltonian in
Eq. (6), we obtain for a medium of length L

Ĥ 5 2e0\x~2 !Âp
~2!(

m
9 fmFvm~vp2m!

emep2m
G1/2

âmâp2m

5 2e0\x~2 !Âp
~1!(

m
9 fmFvm~vp2m!

emep2m
G1/2

âm
†âp2m

†, (8)

where x (2) is real and the double prime indicates that 0
, m , p/2. The phase-matching function is

fm 5 Fexp~2iDkmL ! 2 1
2iDkmL G , (9)

and the phase mismatch is given by

Dkm 5 kp 2 km 2 kp2m . (10)

Assuming a wide phase-matching bandwidth, Dkm → 0,
we find that fm → 1. This result is realistic for typical
crystals for which dispersion leads to a phase-matching
bandwidth of the order of 10 THz.

This Hamiltonian demonstrates the intrinsic two-
photon nature of parametric amplification. That is, the
term proportional to Âp
(1)âp

†ap2m
† indicates that the

pump field is linked to the production of a photon at vm
and a photon at vp2m (with the simultaneous annihila-
tion of a pump photon at vp). In frequency space (see
Fig. 1), the frequencies of the photon pairs are symmetric
about half the pump frequency, vp/2. Below, we discuss
the phase-sensitive amplification that results from this
Hamiltonian.

It is well known that Maxwell’s wave equation is gen-
erated by Hamilton’s equations of motion by use of the
proper Hamiltonian and canonical dynamical variables.
In quantum theory Hamilton’s equations are replaced by
Heisenberg’s equations, which permits a greatly simpli-
fied direct route to the slowly varying wave propagation
equation that we are seeking. Simple differentiation of
Eq. (4a) gives

S ]

]z
1

ns

c
]

]t D Âs
~1!

5 i(
j

L jF iKj 2 i
ns

c
V j 1

ns

c
]

]t
âj~t !G

3 exp~2iV jt !exp~iKj z !. (11)

In Eq. (11) the first two terms on the right-hand side will
cancel in the limit that nj ' ns . The third term on the
right-hand side is given by Heisenberg’s equation of mo-
tion for any operator Ô and corresponding Hamiltonian
Ĥ:

]

]t
Ô~t ! 5

i
\

@Ĥ, Ô~t !#. (12)

Using the commutation relation

@ âmâp2m , â j
†# 5 âp2mdm, j 1 âmdp2m, j (13)

(and remembering the requirement that m , p/2), we
find the Heisenberg equation of motion for â j

† (in the in-
teraction picture, where the linear free-field term in the
Hamiltonian has been absorbed into the time dependence
of Ẽ):

]

]t
âj

†~t ! 5 2ie0x~2 !Âp
~2!S v jvp2j

e jep2j
D 1/2

âp2j~t !. (14)

Substituting the Hermitian conjugate of Eq. (14) into Eq.
(11), we obtain

Fig. 1. Parametric amplification couples pairs of modes with
frequencies symmetrically placed around one half of the pump
frequency. A pair of photons at vm and vp2m is created when
one pump photon is annihilated.
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S ]

]z
1

ns

c

]

]t D Âs
~1!

5 i(
j

L jF iKj 2 i
ns

c
V j 1

ns

c
ie0x~2 !Âp

~1!

3 S v jvp2j

e jep2j
D 1/2

âp2j
†~t !Gexp~2iV jt !exp~iKj z !. (15)

In typical experiments on degenerate parametric amplifi-
cation or generation, squeezed intensity noise is mea-
sured in a small bandwidth (,100 MHz). In the case in
which the medium is weakly dispersive over the small
bandwidth of interest, centered at vs , we can approxi-
mate v j ' vp2j ' vs and nj ' np2j ' ns . The first two
terms on the right-hand side cancel, and Eq. (15) becomes

S ]

]z
1

ns

c
]

]t D Âs
~1!~z, t ! 5

2ivsx
~2 !

cns
Âp

~1!~z, t !Âs
~2!~z, t !.

(16)

With the usual transformation51 to the moving frame
coordinates, t 5 t 2 nsz/c, Eq. (16) becomes

]

]z
Âs

~1!~z, t! 5
2ivsx

~2 !

cns
Âp

~1!~z, t!Âs
~2!~z, t!, (17)

with t held constant in ]/]z. If we now treat the pump
as a strong classical field that depends only on t [replac-
ing Âp

(1)(z, t) with uAp
(1)(t)u], Eq. (17) can be solved ex-

plicitly. Combining Eq. (17) with the z derivative of its
corresponding conjugate, we arrive at the equation

]2

]z2 Âs
~1!~z, t! 5 k2~t!Âs

~1!~z, t!, (18)

where the coupling coefficient k(t) 5 vsx
(2)uAp

(1)(t)u/
cns .

We solve Eq. (18) to recover the equation of motion
for the parametric amplifier with initial conditions
Âs

(1)(0, t) and Âs
(2)(0, t). We obtain

Âs
~1!~z, t! 5 Âs

~1!~0, t!cosh@k~t!z#

2 iÂs
~2!~0, t!sinh@k~t!z#, (19a)

Âs
~2!~z, t! 5 Âs

~2!~0, t!cosh@k~t!z#

1 iÂs
~1!~0, t!sinh@k~t!z#. (19b)

These are the fundamental equations for the degener-
ate parametric amplifier. They are functionally equiva-
lent to Yuen’s formulation for a single-mode field (b̂
5 mâ 1 nâ†, with umu2 2 unu2 5 1).7 Under the condi-
tion that the initial state corresponding to Âs

(1)(0, t) is
the vacuum, the parametric amplifier leads to a squeezed
vacuum, in which photon pairs reside.

Detection of squeezed light in experiments is typically
accomplished by use of balanced homodyne detection, in
which a strong LO field fLO(t)exp(2ivst) is interfered with
the signal. The balanced homodyne detection measure-
ment output is described by51

q̂u 5
1

A2
@â exp~2iu! 1 â† exp~iu!#, (20)
where â is the annihilation operator corresponding to the
space–time mode defined by the overlap of the signal and
the LO fields:

â 5
1

Ls
E fLO~t!Âs

~1!~L, t!dt, (21)

and u is the LO’s phase. The LO field is normalized such
that *dtufLO(t)u2 5 1. We can then calculate the quadra-
ture noise variance of the detected signal:

Dqu
2 5 ^q̂u

2& 2 ^q̂u&
2 5 ^q̂u

2&. (22)

With q̂u , given by Eqs. (20) and (21), we find that

Dqu
2 5 ~1/2!E dtufLO~t!u2$cosh@2k~t!L#

1 cos~2u!sinh@2k~t!L#%. (23)

It can be seen from this result that the maximum squeez-
ing (reduction of Dqu

2) occurs when cos(2u) 5 21 and
when fLO(t) has a duration much less than the duration
of the gain parameter k (t) and fLO(t) has its peak located
at the peak of k (t).

The detected quadrature amplitude can also be defined
in terms of a rotation

q̂u 5 Q̂ cos u 1 P̂ sin u, (24)

such that Q̂ 5 q̂u50 and P̂ 5 q̂u5p/2 . The quadratures Q̂
and P̂ obey the uncertainty relation

DQDP > 1/2, (25)

with the equality holding for minimum-uncertainty
states. The vacuum [obtained when k → 0 in Eq. (23)],
or any other coherent state, has quadratures with equal
uncertainty:

DQ2 5 DP2 5 1/2. (26)

When the LO pulse fLO(t) is much shorter in duration
than k (t), a squeezed state will have variances given by,
for example,

DQ2 5 ~1/2!exp@22s~tLO!#, (27a)

DP2 5 ~1/2!exp@2s~tLO!#, (27b)

where tLO is the time of the LO pulse maximum and
where we have introduced the squeezing gain parameter
s(t) 5 k(t)L. Squeezing is defined as the uncertainty in
one quadrature dropping below the vacuum, or shot-
noise, level; e.g., DQ2 , 1/2. Before the advent of
squeezing experiments, the shot-noise level was generally
thought to be a lower bound in optical detection. With
squeezing, however, this variance can theoretically ap-
proach zero (100% squeezing) for infinite gain.

One is often interested in characterizing the gain pa-
rameter s without doing a squeezing experiment. Fortu-
nately, this gain is the same gain that appears in para-
metric optical amplification. Parametric amplification
can occur when a weak seed beam at frequency vs and a
strong pump beam at frequency vp 5 2vs enter a x (2)

nonlinear crystal. The weak probe beam can be ampli-
fied or deamplified, depending on the relative phase f be-
tween the seed beam and the pump beam. For a single-
mode field entering a parametric amplifier, the
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parametric amplification (or gain) factor G of the seed
(output flux/input flux) can be found from Eqs. (19) to be59

G~t! 5 cosh@2s~t!# 2 cos f sinh@2s~t!#. (28)

By varying f, we can obtain the maximum and minimum
amplification, given by

Gmax~t! 5 exp@2s~t!#, (29a)

Gmin~t! 5 exp@22s~t!#, (29b)

where we have assumed perfect phase matching and spa-
tial overlap between the pump and the seed beams.
Comparing Eqs. (29) with Eqs. (27), we can see that the
maximum amount of squeezing obtainable is directly pro-
portional to the maximum amount of deamplification in
the parametric amplifier. If we can deamplify the seed
by 50%, we can, in principle (assuming perfect detection
efficiency), obtain 50% squeezing.

Even a classical parametric amplifier has gain at vs ,
half the frequency of the pump. The phase sensitivity of
the gain is what leads to the reduction of one quadrature
and the increase of the other. The quantum nature of
the field allows for seeding of the field at vs by spontane-
ous two-photon emission as well as for the quantum cor-
relations needed for sub-shot-noise light detection.

In the absence of perfect detection efficiency, however,
the squeezing is degraded because the squeezing process
depends on the production of twin photons (pairs of pho-
tons created simultaneously). Losses introduce a ran-
dom deletion of individual photons, thus destroying the
quantum correlation within photon pairs. The detection
efficiency comprises several factors. Detector quantum
efficiency, transmission of optical components, and spa-
tial mode matching can be accounted for by the detection
efficiency hdet (which lies between 0 and 1). The mea-
sured amount of squeezing will be degraded44,52,59 such
that

~Dqu
2!measured 5 ~1/2!@1 2 hdet 1 hdet~Dqu

2!produced#,
(30)

where (Dqu
2)produced is given by Eq. (23). Thus, if our ef-

ficiency is 40% and we generate a perfect squeezed state,
we will still observe only 40% squeezing.

A further consideration is temporal mode matching.
In pulsed squeezing experiments the effects of temporal
overlap between the LO and the squeezed signal affect
the overall efficiency and the effective parametric gain co-
efficient seff .60 A phenomenological expression for the ro-
tated quadrature variance is given by52

Dqu
2 5

1
2

1
hdethtemp

2
@cosh~2seff! 2 1

1 cos~2u!sinh~2seff!#. (31)

By fitting this formula to the experimental squeezing re-
sults we extract the effective gain coefficient seff and the
product hdeth temp , where htemp is the effective temporal
mode-matching efficiency (which lies between 0 and 1).
5. LiTaO3 WAVEGUIDES
The channel waveguides with periodic domain inversion
were made at the Eastman Kodak Company in Rochester,
New York. We provide a short description of the pattern-
ing technique here. A more detailed description of the
formation process is given by Baron et al.61 The quasi-
phase-matched channel waveguides in this study were
fabricated in an optical grade z-cut LiTaO3 crystal wafer
by proton exchange, followed by the application of a uni-
form electric field to generate domain inversion for QPM.

The fabrication process involves several steps. First, a
Ta mask with 3.6-mm period is laid onto the bulk crystal.
The crystal is then soaked in pyrophosphoric acid to per-
mit proton exchange. The protons diffuse through the
rectangular open regions in the mask and replace the Li
ions. After proton exchange is complete, the Ta mask is
removed and the crystal is placed in a uniform electric
field of ;22 kV/mm. The electric field flips the direction
of the spontaneous polarization in the unexchanged re-
gions, leaving the p-exchanged regions unperturbed.
This periodic poling leads to a structure that supports
QPM and greatly enhances the SHG efficiency.48 The fi-
nal step is to create the channel waveguide in this peri-
odically poled bulk crystal in a direction transverse to the
domain grating. Another Ta mask with a 4-mm-wide
channel is laid onto the crystal and is then p exchanged in
the pyrophosphoric acid. The p-exchanged region has a
higher index of refraction than the bulk crystal, thus
forming a waveguide. Fabrication was completed with
polishing of the ends of the waveguides to optical quality.
The waveguides were then annealed at 380 °C and
showed a single IR mode at 840 nm. These waveguides
can have SHG efficiencies as much as 3 orders of magni-
tude beyond those of bulk doubling crystals. The
waveguides used in this study have a SHG conversion ef-
ficiency of ;30% for a train of picosecond pulses.62 The
magnitude of the nonlinear coefficient ud33u for LiTaO3 is
21 pm/V (at 1.06 mm). For comparison, KTiOPO4 and
LiNbO3 have ud33u coefficients of 13.7 and 34.4 pm/V,
respectively.63

6. SQUEEZING
The experimental apparatus for squeezing is shown in
Fig. 2. We start with a Ti:sapphire chirped-pulse regen-
erative amplifier laser system generating pulses at 1 kHz,
centered at wavelength 840 nm, with a temporal duration
variable from 150 fs to 3 ps and a pulse energy of ;1 mJ.
The laser beam is split into two arms at the first polariz-
ing beam splitter (PBS1). The lower arm becomes our
LO; the upper arm will generate our signal. The seed
arm is blocked for this measurement. First we generate
our pump at 420 nm by frequency doubling the red light
in a 5-mm-long, type I LiB3O5 (LBO) doubling crystal.
We block the residual red light with a blue filter and then
focus the pump into the waveguide (WG1) with a blue
antireflection-coated diode laser lens (DLb). The down-
conversion signal produced in the waveguide is then col-
limated with a red-coated diode lens (DL r) and propa-
gates to polarizing beam splitter PBS2, where it will
spatially overlap our LO. (The seed beam, indicated in
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Fig. 2 by the topmost dashed line, is used in an indepen-
dent experiment to measure the blue-light-induced red
absorption; see below.) In the lower arm the LO is at-
tenuated with a neutral-density (ND) filter, delayed tem-
porally by amount t in a variable-delay line, and then
phase shifted by u via a mirror attached to a piezoelectric
translator (PZT). The LO is then put through a dummy
waveguide (WG2) to ensure proper spatial mode matching
to the signal.

The LO and the signal (orthogonally polarized to each
other) are spatially overlapped at PBS2 and propagate
collinearly to a balanced homodyne detector. First a red
filter blocks any remaining pump light; then a half-wave
plate (l/2) rotates the beams to 45°, and polarizing beam
splitter PBS3 mixes and splits the two signals. The l/2
plate and PBS3 constitute our 50/50 beam splitter, which
is necessary for balanced homodyne detection.9,11,49,50

The orientation of the l/2 plate is controlled by an ex-
tremely high-precision rotation stage. The precise rota-
tion of the l/2 plate is crucial to obtaining a true 50/50

Fig. 2. Schematic of squeezing experiment. The seed arm is
used only for study of blue-light-induced red absorption.

Fig. 3. Squeezed quadrature variance versus LO phase. Filled
circles, data; solid curve, fit to Eq. (31) with hdeth temp 5 0.36 and
seff 5 0.71; dashed curve, shot-noise level.
split, which is more important in dc-balanced homodyne
detection, used here, than it is in rf-homodyne detection,
as is more commonly employed. The resulting beams are
then focused onto a pair of photodiodes by short-focal-
length lenses. The focused spot size is smaller than the
detector area to ensure little loss of light. The high-
efficiency photodiodes have response times much longer
(;2 ns) than the pulse durations. The photocurrents are
integrated in charge-sensitive amplifiers whose outputs
are sampled by analog-to-digital converters, to yield pulse
photoelectron numbers n̂1 and n̂2 . For specifics on the
electronics, see Ref. 64. The difference number N̂12
5 n̂1 2 n̂2 is proportional to the quadrature amplitude
q̂u , as defined in Eq. (20).

Our best squeezing results occur when picosecond
pulses are used; these results are shown in Fig. 3. The
quadrature variance is plotted versus the LO phase var-
ied by use of the PZT. The experimental data are indi-
cated by the filled circles; the solid curve is a fit based on
Eq. (31) with hdeth temp 5 0.36, seff 5 0.71, and the dashed
curve represents the vacuum shot-noise level, measured
independently (determining the shot-noise level uses the
same procedure as determining uaLOu above; see Ref. 64).
In this experiment the LO contained roughly 800,000
photons, the LO pulse duration was 1 ps, the pump pulse
duration was ;2 ps, and the input pump pulse energy at
z 5 0 was 0.4 nJ. The gain seen in squeezing (seff
5 0.71) is in rough agreement with the waveguide effi-
ciencies measured from an independent SHG measure-
ment (see Ref. 62). Noise below the shot-noise level is
clearly seen at certain phase values with a minimum
quadrature variance of 0.36, which corresponds to a
squeezing level of 28%.

The state is not a minimum-uncertainty state because
of the poor detection efficiency, as indicated by the large
rise of noise to 1.08 at the peaks. This low detection ef-
ficiency was perplexing because the passive losses in the
system are small. The photodiodes have a quantum effi-
ciency of 93%. The optical components from the wave-
guide to the detectors have a transmission of 93%. The
spatial mode matching is 87% as measured by classical
interference contrast. The temporal mode-matching effi-
ciency htemp , calculated from the temporal pulse
profiles,52 is greater than 95%, since group-velocity walk-
off in our doubling crystal generates a pump pulse that is
at least twice as long as the LO pulse. These factors lead
to an overall detection efficiency hdeth temp of 71%, yet our
squeezing levels indicate an efficiency of 36%. This dis-
crepancy led us to study another loss mechanism in the
waveguides: blue-light-induced red absorption.

7. MODEL FOR BLUE-LIGHT-INDUCED RED
ABSORPTION
Blue-light-induced red absorption (BLIRA) is the attenu-
ation of a red probe beam in the presence of strong blue
light. BLIRA, also known as blue-light-induced infrared
absorption (BLIIRA),65 is detrimental to the performance
of nonlinear optical crystals. In a nonlinear optical
waveguide the effect is readily active because of the high
intensities and long interaction lengths. In bulk crystals
it has degraded achievable squeezing in optical paramet-
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ric oscillation32,66 and limited SHG in high-power single-
pass KNbO3.

67 Shiv et al.68 have investigated methods
for circumventing BLIIRA in KNbO3 by using higher tem-
peratures, longer wavelengths, and different cuts of the
crystal. Their results are encouraging to the nonlinear
optics community.

BLIIRA was previously modeled by assuming the exis-
tence of several free-carrier trapping states.69 The physi-
cal model for BLIRA that we present here is based on blue
TPA70 into the conduction band of the crystal and the sub-
sequent population of trap states. The model is shown in
Fig. 4. Single photons of blue light are absorbed near the
semiconductor band edge, where presumably trap states
exist. Single-photon absorption (SPA) and TPA of strong
blue pump light are modeled according to

dIb

dz
5 2abIb 2 bbIb

2, (32)

where Ib is the blue intensity (W/cm2), z is the propaga-
tion distance (along the waveguide), and ab and bb are
the blue SPA and TPA coefficients, respectively. Solving
this equation, we find for the transmitted intensity
Ib(L, t) 5 Tb(t)Ib(0, t), where Tb(t) is the blue
transmission71:

Tb~t ! 5 H Ib~0, t !
bb

ab
@exp~abL ! 2 1# 1 exp~abL !J 21

,

(33)

where Ib(0, t) is the intensity at the input face at time t
and L is the length of the waveguide. Assuming a sech2

pulse shape for Ib(0, t) 5 I0 sech2(1.76t/t), where t is the
FWHM of the input blue-pulse intensity, we can integrate
analytically over all time to solve for the transmitted
pulse energy Eout as a function of input energy E in :

Eout 5
E in exp~2abL !

2Au~u 1 1 !
lnF S 1 1

1

u D 1/2

1 1

S 1 1
1

u D 1/2

2 1
G , (34)

where

u 5
1.76E inbb

Awgtab
@1 2 exp~2abL !# (35)

Fig. 4. Physical model for blue TPA and the generation of trap
states X for BLIRA.
and Awg is the cross-sectional area of the waveguide.
Note that Eq. (32) neglects absorption of blue light by
blue-generated trapped carriers.70

The trap states are assumed to be generated by both
single-photon and two-photon blue absorption, according
to

dNx

dt
5

1
\v

abIb 1
j

2\v
bbIb

2, (36)

where Nx is the number density of trap states X, \v is the
energy of the blue photon, and j is the probability that an
electron in the conduction band will get caught at a trap
site. These traps can then absorb red light by SPA ac-
cording to

dIr

dz
5 2sxNxIr , (37)

where Ir is the red-light intensity and sx is the red ab-
sorption cross section for the trap state. (Also, we have
neglected any single-photon and two-photon red absorp-
tion by the material in the absence of blue light, because
the material is essentially transparent at the red wave-
length.) The end result of this whole process is greater
attenuation of the red beam with increasing blue pump
energy.

8. EXPERIMENTAL TWO-PHOTON
ABSORPTION AND BLUE-LIGHT-INDUCED
RED ABSORPTION
To measure the TPA of the blue pump pulse we monitored
the output blue energy through the waveguide as we in-
creased the blue energy entering the waveguide. The re-
sults are shown in Fig. 5, where we have plotted the blue-
energy transmission Eout /E in of the waveguide as a
function of blue energy at z 5 0. To calculate the blue
energy at z 5 0 we measured the energy of the blue light
before the waveguide and estimated a waveguide cou-
pling efficiency of 22%. The blue transmission drops
quickly with increasing energy and then levels off at a
value of ;6% at an input energy of 2.9 nJ. The damage
threshold for LiTaO3 was found to be ;40 nJ (incident
upon the waveguide face). The solid curve in Fig. 5 is the

Fig. 5. TPA of blue light in a LiTaO3 waveguide. Here we plot
the transmission of a blue pulse versus input blue energy.
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theory based on our model, Eq. (34), with Awg 5 8
3 1028 cm2 and t 5 1 ps; the data are indicated by the
filled circles. Fixing the linear absorption to a value ab
5 0.07 cm21 and varying bb , we obtained a good fit to
the data with a value for the TPA coefficient bb 5 2.2
3 1029 cm/W. This value could be off by 50%, however,
because of the sensitivity of the model to waveguide cou-
pling efficiency. Nonetheless, this value is more than an
order of magnitude greater than those found in optical fi-
bers (;1 3 10210 cm/W).

The experimental arrangement for measuring BLIRA
is shown in Fig. 2. The two lower dashed lines indicate
the red seed beam used to probe the waveguide, tempo-
rally delayed from the blue pump pulse by tseed . By
varying tseed we could probe the turn-on time of the
BLIRA and found that it is essentially instantaneous (as
fast as our shortest pump pulse, ;250 fs), yet the effect
survives as long as a millisecond. We measured the red
transmitted energy Er(L, E in) as a function of blue input
energy E in . The results are shown in Fig. 6, where we
have plotted the BLIRA absorption factor Ar [1 minus the
red transmitted energy Er(L, E in) in the presence of blue
light divided by the red transmitted energy Er(L, 0) with-
out blue light] versus input blue pump energy E in :

Ar~E in! 5 1 2
Er~L, E in!

Er~L, 0!
. (38)

We observed nearly 50% absorption of the red beam at
high pump energies. This result agrees qualitatively
with our squeezing results, for which we found that the
detection efficiency (the fitted value of hdeth temp) went
down with increasing pump energy.

Equations (36) and (37) are sufficient to fit the data
shown in Fig. 6; however, the theory predicts a depen-
dence on blue-pulse duration that contradicts our prelimi-
nary experimental results (i.e., with j 5 0.016 and sx
5 6.0 3 10217 cm2, the theory predicts that 10-ps pulses
will generate more BLIRA than 1-ps pulses, opposite
what we found experimentally). We are currently work-

Fig. 6. BLIRA in a LiTaO3 waveguide. Here we plot the
BLIRA factor Ar [1 minus the red transmitted energy Er(L, E in)
in the presence of blue light divided by the red transmitted en-
ergy Er(L,0) without blue light] from Eq. (38) as a function of in-
put blue energy.
ing on unraveling this discrepancy and hope to present a
fully consistent model in a future publication.

9. SUMMARY AND CONCLUSIONS
The deleterious effects of two-photon absorption (TPA)
and blue-light-induced red absorption (BLIRA) indicate
that ultrafast pulses in nonlinear optical waveguides
might not be capable of generating large amounts of
squeezing at these wavelengths. The problem is that
TPA quickly attenuates the amount of blue pump light
available for squeezing, thus limiting the squeezing gain,
whereas BLIRA induces absorptive losses for the red
light, thus destroying squeezed light’s quantum correla-
tions between photon pairs. This situation is typical of
the trade-offs that are often present in nonlinear optics,
and possible circumventions do exist. For instance, the
blue pump frequency could be lowered to operate below
half-band-gap of the LiTaO3 crystal, thus preventing
TPA. QPM devices are particularly suited to operation
over a range of frequencies inaccessible to birefringent
phase matching; thus this could be an attractive match.
Another proposition that warrants investigation is the
use of longer pump pulses to effectively lower the peak in-
tensity, thus limiting the amount of TPA. (The caveat
with longer pulses, however, is that one must still be able
to generate a short LO for pulsed homodyne detection.
Generating such a combination of long and short pulses is
difficult but feasible.) With high-efficiency waveguides,
longer pulses could still generate considerable squeezing.

As Kimble pointed out,44 there has been noticeable lack
of systematic progress in the experiments since 1985.
The amount of squeezing does not linearly improve with
time, as one might expect, but jumps around rather ran-
domly. This behavior stems from the pursuit of a simple
system to produce squeezed light. Nonlinear optical
waveguides simplify the squeezing process in some re-
spects and, if the BLIRA can be overcome, may provide a
new means to generate large amounts of squeezing. It
remains to be seen what the fundamental limiting factor
that limits the squeezing will be. TPA of blue light may
occur and lead to red absorption; linear absorption of red
light cannot be entirely eliminated; and Kerr effects and
nonlinear modification of wave guiding can occur at high
pump powers.
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