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easuring ultrashort optical pulses in the presence of
oise: an empirical study of the performance of spectral
hase interferometry for direct electric field reconstruction

teven Jensen and Matthew E. Anderson

We have measured the performance of a real spectral phase interferometry for direct electric field
reconstruction �SPIDER� apparatus operating under suboptimal conditions. We analyzed the errors in
SPIDER’s measurements of the temporal phases and intensities of 50-fs ultrashort laser pulses as a
function of the additive noise in the detected signal. It was found that SPIDER performs exceptionally
well, particularly in the case of additive noise. Specifically, a signal with 10% noise yields a pulse that
has a mere 2% error in its intensity profile and a phase that differs from the nominal value by 0.2 rad.
Furthermore, we quantified SPIDER’s performance with limited detector resolution and as a function of
signal averaging. © 2004 Optical Society of America
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. Introduction

ltrashort laser pulses, with durations of only tens of
emtoseconds, have enabled exciting research in

any areas of physics. With femtosecond laser
ulses, interferometric second-harmonic spectros-
opy can be performed to identify critical point fea-
ures in modern solid-state materials,1 generate x
ays,2 initiate fluorescence in studies of biological tis-
ues,3 drill holes and cut steel in micromachining
pplications,3 excite particles in laser-plasma stud-
es,4 and manipulate electron states in quantum con-
rol experiments.5 These are only a few examples
rom a rapidly growing list of applications that use
ltrashort laser pulses. Of critical importance to
hese studies is a firm knowledge of the ultrashort
ulse itself, namely, its amplitude and phase, in ei-
her the temporal or the frequency domain. Until
ecently, this was a daunting task.

Fortunately, in the past decade many different de-
ices have been developed to perform measurements
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n ultrashort pulses. These techniques have moved
ell beyond the simple spectrometer and autocorr-
lator,6 which yielded the intensity envelopes in the
pectral or temporal domains. Currently, full-field
haracterization is possible by way of several differ-
nt methods. By far the most popular technique is
requency-resolved optical gating �FROG�,7 a beauti-
ul approach that has borne out many variations �and
nspired a new era of acronymous invention�, includ-
ng second-harmonic generation FROG,8,9 twin recov-
ry of electric field envelopes by use of FROG
TREEFROG�,10 temporal analysis by dispersion of a
air of light e fields �TADPOLE�,11 multipulse inter-
erometric FROG �MI-FROG�,12 and grating-
liminated no-nonsense observation of ultrafast
ncident laser light e fields �GRENOUILLE�.13

ther pulse measurement techniques include cross-
hase modulation,14 phase and intensity from cross
orrelation and spectrum only �PICASO�,15 direct op-
ical spectral phase measurement,16 sonograms,17

pectral interferometry,18 and spectral phase inter-
erometry for direct electric field reconstruction �SPI-
ER�.19,20

SPIDER uniquely combines two advantageous el-
ments found in pulse measurement devices. SPI-
ER requires no moving parts and uses a direct,
oniterative retrieval algorithm that produces a
nique and unambiguous phase and intensity profile
or the measured pulse. In addition, SPIDER has
een shown to be accurate,19–22 fast23,24 �it was re-
ently operated at 1 kHz�, and capable of measuring
1 February 2004 � Vol. 43, No. 4 � APPLIED OPTICS 883
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ingle pulses as well as coherent pulse trains.25

PIDER has measured pulse durations down to less
han 6 fs,26 it can operate over a wide range of fre-
uencies from infrared to blue, and it costs relatively
ittle. SPIDER is gaining recognition as an excel-
ent instrument for applications that require the com-
lete characterization of an ultrashort laser pulse.
Of course, understanding the performance of any
etrology instrument is a precursor to using it con-

dently in a laboratory setting. To this end, several
tudies have addressed the performance of SPIDER.
orrer investigated the effects of spectrometer cali-
ration error on the performance of SPIDER.27 He
ound that problems associated with calibration error
ere completely eliminated through use of reference
hase differences. Yeremenko et al. tested several
ulse measurement techniques head to head and sug-
ested new metrics to quantify their performance.28

nderson et al. performed numerical investigations
n the SPIDER inversion routine to determine its
esponse to nonideal data.21 In this last study, the
uthors programmed computer simulations to deter-
ine how well SPIDER could reconstruct the electric

eld of an arbitrary pulse in the presence of noise,
ow well SPIDER performed with an input signal of

imited resolution, and what effect averaging had on
he accuracy of the measured field. Anderson et al.
etermined the optimum parameters for SPIDER de-
ices and showed that SPIDER was relatively insen-
itive to noise and the resolution of the detected
ignal. They also showed that the accuracy of SPI-
ER improved significantly when several signals
ere averaged prior to executing the retrieval algo-

ithm. Dorrer and Walmsley22,29 proposed a new
etric to quantify the performance of SPIDER, based

n the rms electric field error, and numerically inves-
igated this error as a function of signal-to-noise ratio
SNR�. These studies illustrate a simple and phys-
cally reasonable estimate of SPIDER’s ability to re-
onstruct optical pulses, and the results show good
greement with the Anderson et al. study.21 All
hese studies were numerical, however, and what re-
ains to be seen is how these results will translate to
real laboratory setting. It is precisely this en-

eavor that we address in this paper.

. Theoretical Basis

t the heart of SPIDER’s theoretical underpinnings
s spectral-shearing interferometry. The fundamen-
al principle is as follows. An ultrashort-pulse pair
hat has a separation in time � and a separation in
enter frequency � is measured with a spectrometer.
he resulting interference pattern, or spectral inter-

erogram, contains information about the spectral
hase ���� of the original ultrashort pulse. It is pre-
isely this information that the SPIDER algorithm
etrieves. Combining the spectral phase with the
lectric field spectral amplitude E��� �given by the
quare root of the intensity spectrum�, the pulse is
ncovered. Namely,

E���exp��i����	 (1)
84 APPLIED OPTICS � Vol. 43, No. 4 � 1 February 2004
ontains the requisite information to completely de-
ne our pulse.
The experimental complexities of SPIDER are de-

ailed in Section 3. For now, however, assume we
ave generated two pulses that are temporally and
pectrally sheared and given by

E1��� � �E1����exp��i����	,

E2�� � �� � �E2�� � ���exp
�i���� � �� � ��	� ,
(2)

here � represents the temporal delay between
ulses and � represents the spectral shear.
When the two pulses of Eqs. �2� spectrally interfere

n the spectrometer, they produce fringes. The in-
ensity of the fringes is dictated by the squared mod-
lus of the resultant electric field, which equals

S��� � �E1����2 � �E1����E2�� � ���exp
i�����

� ��� � �� � ��	� � �E1�����E2�� � ���

� exp
�i����� � ��� � �� � ��	�

� �E2�� � ���2 . (3)

computer records this interferogram and executes
he SPIDER retrieval algorithm. To characterize
he incident pulse, the retrieval algorithm needs to
etermine E��� and ���� for the incident pulse. The
pectral amplitudes of the two pulses are nearly
qual, i.e., E1��� � E2��� � E���, and can easily be
btained from any spectrographic measurement of
ne pulse or even two pulses with a spectral shear of
ero. We typically measure E��� in a calibration
easurement before calculating ����.
When the SPIDER retrieval algorithm calculates

he phase, it begins with Eq. �3�. A Fourier trans-
orm of Eq. �3� is given by

�
S���� � 
��

�

d��exp�i�t�	��E1����2 � �E2�� � ���2	

� 
��

�

d�
exp�i��t � ��	��E1�����E2��

� ���exp
i����� � ��� � ��	�

� 
��

�

d�
exp�i��t � ��	��E1�����E2��

� ���exp
�i����� � ��� � ��	� . (4)

he top line of Eq. �4� contains the amplitude infor-
ation �the spectral intensities� that we already

now; the next two lines contain the phase informa-
ion. Lines four and five of Eq. �4� are time-reversed
eplicas of the same information; one is centered
bout t � �� and one about t � �� �the amplitude
nformation is centered about t � 0�. We use a
quare window filter to isolate the temporal sideband
ontaining ��.

Next we take the inverse complex Fourier trans-
orm of the filtered signal. This returns the original
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nterference term, containing ��, minus amplitude
nformation as

exp
i����� � ��� � �� � ��	�. (5)

he value for � is measured independently and easily
emoved from Eq. �5� with multiplication by
xp��i���. This leaves us, as the argument of the
xponential, ����� � ��� � ��	.
The phase can be extracted from this argument
ith a concatenation process. This process samples

he phase at values of the frequency separated by �,
he spectral shear. For spectral shears that are
mall relative to the structure of the spectral phase,
irect integration can be used to uncover the spectral
hase. Namely, if we let

���� � ����� � ��� � ��	 � �
d����

d�
, (6)

hen

���� �
1
� ����d�. (7)

he sampling theorem ensures that, as long as alias-
ng does not occur in our original measurement of the
ignal, the calculated phase will be unique. The
pectral phase can now be combined with the spectral
mplitude to yield the complete electric field in the
pectral domain. A simple Fourier transform yields
he electric field in the temporal domain:

E�t� �
1

2�
��

�

�E����exp��i����	exp�i���d�. (8)

easuring the spectral phase is the experimentally
hallenging component of this endeavor. In Section
we detail the experimental implementation.

. Experimental Methods

. Precision Versus Accuracy

n our experiment we were interested in how our
easured temporal phase and temporal intensity

hanged as experimental conditions varied; e.g., we
anted to know to what degree the measured tem-
oral intensity deviated from its optimal value if the
oise in the signal increased. This illustrates an

mportant difference between our experiments and
he numerical simulations. The computer simula-
ions began with an exactly known pulse shape; they
ompared this pulse shape to the pulse extracted
rom the inversion routine to determine the accuracy
f SPIDER. We have no absolutely known pulse
hape �if we already knew the pulse shape, we would
ot need SPIDER!�. Rather than use an absolutely
ccurate known temporal phase and intensity, we use
temporal phase and intensity measured under op-

imal conditions as our reference. We define opti-
al conditions as interferograms recorded with the

ighest possible SNR and the averaging of at least 50
ignals. This condition is similar to how the SPI-
ER device is calibrated, thus leading to good accu-
acy.22

The obvious question then arises: Is this a good
ay to characterize the input pulse? Namely, will
veraging noisy interferograms ultimately lead to the
orrect pulse shape, or are there systematic errors
ithin the SPIDER algorithm that prevent an accu-

ate reconstruction? According to the numerical stud-
es, the following appears to be the case. There is a
aseline error for perfectly noiseless interferograms
ntroduced by the finite resolution of the detection
ystem. That error amounted to a temporal enve-
ope mismatch of roughly 0.15% and a temporal
hase mismatch of roughly 0.007 rad, both exceed-
ngly minute quantities.

So in the presence of noise, inevitably introduced
y any experimental system, what happens if we av-
rage multiple interferograms? A well-known re-
ult in statistical error analysis says that the
recision of a measured quantity will improve as the
quare root of the number of measurements.30 Thus,
veraging multiple noisy interferograms before the
nversion routine should improve the precision of the
econstructed pulse shape. In the numerical stud-
es, that was indeed found to be the case. In fact, a
t to our data for errors versus interferogram aver-
ging has a nearly perfect 1��N dependence if a
aseline error is included �our estimate of this base-
ine error is close to the minimum errors reported
arlier�. Thus it appears that, in our experiments,
se of a pulse reconstructed from a high-SNR, mul-
iply averaged interferogram will suffice as our ref-
rence pulse profile. We then compare the
econstructed pulse from a noisy interferogram to
his reference pulse. In essence, we are measuring
he precision of SPIDER, relying on the demonstra-
ion of previous studies of SPIDER’s accuracy.19–

3,25–27

. Apparatus

ur experimental apparatus is shown in Fig. 1. Our
ight source, a mode-locked Ti:sapphire laser,31 gen-
rated 50-fs pulses at 80 MHz with an average output
ower of approximately 100 mW. The other ele-
ents of our system included a collimating telescope,

n external-cavity paired-prism pulse compressor
for imparting negative chirp to selected pulses�,
used-silica plates �for imparting positive chirp to se-
ected pulses�, an automated beam alignment system,
nd a SPIDER apparatus. The SPIDER apparatus
ollowed a design by Dorrer32 except that a type I
-barium borate crystal was used to eliminate the
eed for a polarization-rotating half-wave plate in the
ulse-stretching arm.
The experimental protocol is as follows. An ultra-

hort optical pulse enters the SPIDER apparatus
hrough a pair of alignment pinholes. The incident
ulse strikes an etalon at near-normal incidence.
he two reflections from the front and back sides of
he flat glass constitute two nearly identical copies of
he original pulse �the slight differences in intensity
nd chirp do not cause significant problems�. Only a
1 February 2004 � Vol. 43, No. 4 � APPLIED OPTICS 885
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emporal shift, by a time �, distinguishes the two.
he temporal delay depends on the thickness of the
talon and the pulse’s angle of incidence. The tem-
oral delay for our SPIDER was 1.77 ps. This cor-
esponds to approximately 20 fringes across the
WHM of our pulse, well within the optimal operat-

ng window as defined in Ref. 21. The light that
ropagates through the etalon is sent into a grating-
air stretcher �actually a compressor in the typical
ltrafast jargon, but equivalent to a stretcher with
pposite sign of chirp�. The diffraction gratings
1200 lines�mm blazed at 750 nm� impart a large
econd-order dispersion to this pulse. In our partic-
lar SPIDER the second-order dispersion equaled
48 kfs2.
The pulse pair is mixed with the stretched pulse in
type I �-barium borate nonlinear crystal, where

ig. 1. SPIDER apparatus �a� An ultrashort laser pulse enters
hrough a pinhole in the top left corner and strikes an etalon where
t is separated into three pulses. �b� Two of these pulses travel
own one arm of SPIDER to the type I �-barium borate crystal.
c� The third pulse travels to a pair of diffraction gratings and is
emporally stretched before meeting the pulse pair at the crystal.
d� The crystal spectrally shears the pulse pair and doubles their
requencies before they enter the spectrometer. �e� Inside the
pectrometer the pulses spread out and interfere with each other.
f � The interference pattern, or interferogram, is detected by an
rray of photodiode detectors and exported to a computer for math-
matical analysis. �g� The entire apparatus fits on a bread board
hat is 12 in. �31 cm� wide by 18 in. �46 cm� long.
86 APPLIED OPTICS � Vol. 43, No. 4 � 1 February 2004
pconversion takes place. Because we are using a
ype I crystal, we employ a noncollinear phase-
atching geometry to minimize doubling of the indi-

idual pulses. With a pinhole, we can further isolate
he mixed signal. Because the stretched pulse is
ong relative to the durations of the individual pulses,
he upconversion process produces two blue pulses
hat replicate the phase of the incident red pulse,
eparated in time by �. And because the stretched
ulse is chirped, the two blue pulses have a spectral
hear � between them, given by the relationship be-
ween � and the amount of chirp. For our experi-
ents, � was approximately 1�20 the FWHM

andwidth of the incident pulse.
The spectrometer then records the interference

attern between these two pulses. We employed an
cean Optics 2000-USB spectrometer with a grating
lazed at 750 nm, 1200 lines�mm, and a 2048 array
f photodiode detectors in which each detector had
2-bit resolution. This spectrometer yielded a spec-
ral resolution of better than 0.25 nm. The spectral
nterference pattern of light and dark bands created
y SPIDER, which the spectrometer’s photodiodes
etect as an array of periodically varying intensity
evels, forms an interferogram or record of the inter-
erence. The interferogram contains complete
hase information for the input pulse. An example
f an interferogram obtained with our system is
hown in Fig. 2. The SPIDER algorithm then ex-
racts the spectral phase information. However, it
hould be remembered that the interferogram is
ade from blue pulses; our original pulse was near

nfrared. Thus we have to convert the information
t frequency � back to frequency ��2. Furthermore,
he spectrometer is linear in wavelength, not fre-
uency, so our algorithm interpolates to convert S���
o S���.

There are also two calibration steps that need to be
erformed to complete the pulse reconstruction.
he first is to measure the delay �. This is achieved
hen we look at the interferogram that results from

he two pulses reflecting off the etalon. Namely, we
lock the stretched arm of SPIDER, remove the blue
lter, and let some near-infrared light leak into the

Fig. 2. Measured interferogram with the highest possible SNR.
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g
ual phase and the average of all five phases.
pectrometer. We extract � from the fringe spacing
f the resultant interferogram. This light is also
sed to record the fundamental spectrum. By Fou-
ier transforming this interferogram, keeping instead
he t � 0 term, and transforming back, we obtain the
pectrum �and spectral amplitude�. These steps are
erformed before the real-time SPIDER begins oper-
ting �although there is a way to measure the funda-
ental spectrum dynamically by letting some near-

nfrared light leak into the spectrometer.33�

. Noise Sources

here are two detrimental effects we wish to con-
ider. The first is additive noise primarily due to
lectronic noise in the detector. In the case of low-
ight levels, this can significantly degrade the quality
f the interferogram. The noisy interferogram can
e modeled by

Snoisy��i� � Sinput��i� � �elec��i�, (9)

here Snoisy��i� is the resultant noisy interferogram,
i is the optical frequency of pixel element i, Sinput��i�

s the normalized ideal �low-noise� interferogram for
he input pulse, and �elec��i� is the electronic noise
ue to the detection system.
The second detrimental effect is due to the finite

gray-scale� resolution of the detector itself. By ar-
ificially quantizing the resultant interferogram, we
an simulate the effects of a low-bit-depth detector.
he interferogram is modeled by

Squant��i� �
1

�2bit depth � 1�
��2bit depth � 1�Sinput��i��,

(10)

here Squant��i� is the quantized interferogram, bit
epth is the detector resolution, and the brackets ��
epresent rounding to the nearest integer. Because
input��i� is normalized to a peak value of unity, this
rocedure gives us 2bit depth gray-scale levels in our
nterferogram.

. Sample Preparation

o prepare our interferogram samples, we first per-
ormed a background subtraction to eliminate the
ffects of room light and inconsistencies between bias
evels and sensitivities in the spectrometer’s detec-
ors. We next truncated our data array to 1024 el-
ments; our measured interferograms occupied only
pproximately 600 elements of the spectrometer, so
e could easily perform the truncation without losing
ny information from the signal. From the 1024-
lement interferogram, the SPIDER inversion algo-
ithm extracted a 512-element spectral phase. To
onvert the calculated spectral phase and the spectral
ntensity �obtained directly in a separate calibration

easurement� into a temporal phase and temporal
ntensity required only a simple fast Fourier trans-
orm. We padded the spectral phase and intensity
rrays with zeros prior to executing this fast Fourier
ransform to ensure that our temporal phase and
ntensity arrays had 1024 elements.
. Intensity and Phase Errors

hen operating under high-SNR conditions, the SPI-
ER apparatus processes extremely precise mea-

urements with only minute random errors. For
xample, Fig. 3�a� shows five different spectral phase
easurements made by SPIDER of the same pulse

rain under optimal conditions; the similarity of these
recise measurements renders them virtually indis-
inguishable. To see the difference between phases,
ig. 3�b� is a plot of the difference between each phase
nd the average phase, plotted over the bandwidth of
he pulse. The vertical scale indicates the minute
ifferences between measurements, a testament to
PIDER’s repeatability.
To quantify the precision of SPIDER we adopt the
ethod introduced by Fittinghoff et al.34 with a slight
odification following from above. �The rms error

stimate introduced by Dorrer and Walmsley22,29 has
nique benefits; however, we chose the following met-
ic to provide a direct comparison with previous re-
earch on both FROG34 and SPIDER.21� We
alculated the temporal intensity error εI according to

εI � � 1
N �

N

�Iref�tj� � I�tj�	
2�1�2

, (11)
ig. 3. Five separate measurements of the spectral phase of an
ltrashort laser pulse. �a� The five measurements are indistin-
uishable on this scale. �b� The difference between each individ-
j�1

1 February 2004 � Vol. 43, No. 4 � APPLIED OPTICS 887
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here N indicates the total number of elements in the
rray �1024�; j represents the index of the jth pixel in
he array; Iref�tj� is the reference temporal intensity
or the jth pixel, as determined by use of optimum
onditions; and I�tj� is the measured temporal inten-
ity of the jth pixel. The array I�tj� was normalized
uch that it equaled unity at its maximum value.
herefore εI nearly equals the percent error of the

emporal intensity. Because the SPIDER algorithm
eturns a temporal pulse that has no defined absolute
emporal position or peak height, we scaled and
hifted I�tj� to minimize εI. We accomplished this by
alking the reference and measured temporal inten-

ities past one another in steps of one pixel. At each
tep we calculated εI. When the two intensity peaks
ere properly aligned, the error was minimized.
We could not calculate a percentage error for the

emporal phase because this would be undefined
hen the input phase was zero; instead, we used a

ms error. In addition, the temporal phase error
as undefined for times at which the temporal inten-

ity was zero. Consequently, the rms phase error
as weighted by the temporal intensity such that, for

imes when the temporal intensity was nonexistent,
he contribution to the phase error was zero. The
hase error ε� was calculated according to

ε� �

� 1
N �

j�1

N

I2�tj���ref�tj� � ��tj�	
2�1�2

� 1
N �

j�1

N

I2�tj��1�2 , (12)

here N equals the total number of elements in the
nput array from our detector �1024�, j represents the
ndex of the jth pixel of the detector, I�tj� is the mea-
ured temporal intensity of the jth pixel, �ref�tj� indi-
ates the reference temporal phase for the jth pixel,
nd ��tj� is the measured phase for the jth pixel.
nlike the percentage error of the temporal intensity,

he error in the temporal phase has units of radians.

. Experimental Results

e measured the performance in three specific cases;
e analyzed the dependence of the errors on the noise

n the sample, the resolution of the detector, and the
umber of signals averaged prior to running the in-
ersion routine.
In our experiments involving noise, we consider

nly additive noise in our system although the nu-
erical study looked at additive and multiplicative

oise. There are two reasons for this. Multiplica-
ive noise, such as that arising from slight differences
n the biasing level of our spectrometer photodiodes,
as easily removed from the experiment and conse-
uently had no effect on our precision; second, there
as no practical way to introduce reproducible, con-

rollable, and quantifiable multiplicative noise into
ur experimental system.
88 APPLIED OPTICS � Vol. 43, No. 4 � 1 February 2004
. Temporal Error Versus Noise in the Interferogram

e employed three different readily available pulse
hapes for the noise studies: pulses that were near
he transform limit, pulses that had a positive chirp,
nd pulses that had a negative chirp. The near-
ransform-limited pulses were obtained directly from
he laser. To create pulses with positive chirp, the
aser pulses were passed through 5.0 cm of fused
ilica prior to entering SPIDER. And to create
ulses with negative chirp, the laser pulses were sent
hrough an external-cavity prism-pair compressor.
he spectral phases for the three different pulse
ypes are shown in Fig. 4�a�, and their temporal in-
ensities are shown in Fig. 4�b�.

To accomplish our first task, determining the tem-
oral error as a function of noise in the interferogram,
e first had to determine a relationship between the

eal additive noise in our system and the theoretical
oise fraction used in computational studies. In the
umerical study,21 the additive noise was modeled by
���n���i, where � is the noise fraction and �i is a
seudorandom number taken from a Poisson distri-
ution of mean value n. �Note that in the numerical
tudies, n � 5.� By setting the rms value of the

ig. 4. Three pulses used in this study. �a� The spectral phases
ere positive quadratic, flat, and negative quadratic. �b� The

orresponding temporal profiles for positive quadratic �dashed
urve�, flat �solid curve�, and negative quadratic �dotted curve�.
The positive quadratic pulse actually contained some cubic terms
s well, which leads to the interesting temporal profile.�
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lectronic noise equal to the theoretically modeled
oise,

rms��elec� � rms��

n
�i	 , (13)

e determined the noise fraction �. The noise frac-
ion was inversely proportional to the measured SNR
nd scaled linearly with the peak intensity of the
nterferogram. A typical interferogram with 10%
oise fraction is shown in Fig. 5. Clearly this ap-
ears as a rather poor-looking interferogram. This
s primarily due to the limited fringe resolution that

akes this noisy interferogram appear to have a
uch lower SNR than it actually does.
Having established a protocol for determining the

emporal errors and having defined the noise frac-
ion, the experiment proceeded rather straightfor-
ardly. We began with a maximum SNR and
etermined the temporal intensity errors and the
emporal phase errors as the noise was increased.
nitially we increased the noise fraction by decreas-
ng the integration time on the spectrometer. When
he integration time reached its lowest value �3 ms�,
e increased the neutral density in our beam to fur-

her diminish the signal. For each input pulse, we
ook 100 measurements at each noise fraction and
eport the average of those values. �The error is
veraged over all three pulse shapes.�
The results for this first part of the experiment are

hown in Fig. 6, where we plotted the average inten-
ity and phase errors versus noise fraction. The
oise fraction was increased from 0.001 �low noise� to
.3 �high noise�. The intensity error ranged from
pproximately 0.2% at the low end to 3% at the high
nd. The phase error ranged from approximately
.015 rad at the low end to 0.4 rad at the high end.
t also appears that both errors increase roughly as
he square root of the noise fraction.

These results agree well with those found in the
umerical simulations. The slopes of the lines and
elative positions of the intensity and phase errors
re similar. Our results indicate slightly higher
agnitudes of error, however. This is not unex-

ected when a simulated interferogram and an actual

Fig. 5. Measured interferogram with 10% noise.
nterferogram are compared. The theoretical fringe
epth was almost 100% whereas the actual fringe
epth in our experiment is closer to 60%. This
rises from several factors, including slight differ-
nces in the energies of the interfering pulses, imper-
ect overlap of the interfering pulses, and the finite
idth of a detector pixel compared with the width of
fringe �there are approximately 4.5 pixels per

ringe�. Because the experimental fringe depth is
ust over half of the peak intensity, the SNR is actu-
lly approximately twice as high as calculated; this
rend is reflected in the data of Fig. 6.

To get a better visual idea of its performance, Fig.
shows an actual pulse shape calculated during this

un of experiments. The reference temporal inten-
ity and phase are given by the dashed curves. The
easured temporal intensity and phase with 10%
oise are given by the solid curves. The temporal

ntensity error is approximately 2% and the temporal
hase error is approximately 0.04 rad.

. Temporal Errors Versus Detector Resolution

n the second part of our experiment we looked at the
emporal errors as a function of the resolution of the

ig. 6. Average error in reconstructed temporal intensity �lower
urve� and phase �upper curve� versus noise fraction.

ig. 7. Reconstructed pulse intensity and phase from interfero-
rams recorded under optimum conditions �dashed curves� and
ith 10% noise fraction �solid curves�.
1 February 2004 � Vol. 43, No. 4 � APPLIED OPTICS 889
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hotodiode detectors. Because the spectrometer
ad a fixed resolution, we artificially lowered the res-
lution by digital processing in the computer accord-
ng to Eq. �10�. All interferograms used for rounding
ere acquired under optimal conditions. Figure 8

hows an interferogram rounded to four levels. Af-
er the levels were rounded, the interferograms were
rocessed by the SPIDER algorithm. The temporal
ntensity and phase errors were calculated according
o Eqs. �11� and �12�.

Again, for each pulse shape at each resolution, 100
rials were run for a total of 300 trials per resolution
evel. The average value of the measurements is
hown in Fig. 9. The intensity errors range from
oughly 3% at low quantization to 0.2% at high quan-
ization. The phase errors range from 0.5 rad down
o 0.004 rad. These results are close to those previ-
usly obtained by numerical simulations. However,
n this case, our measured phase errors for high res-
lutions are slightly smaller than those found in the
umerical study. The reason is that the reference
hase and intensity we used are calculated in the
ame manner as the measured values; in the compu-
ational study, processed to unprocessed temporal
rofiles are compared. Inevitably there will be
mall errors in the processed phase, particularly be-

Fig. 8. Interferogram rounded to 2 bits �four levels�.

ig. 9. Average error in reconstructed pulse intensity �solid cir-
les� and phase �open circles� versus quantization bit depth.
90 APPLIED OPTICS � Vol. 43, No. 4 � 1 February 2004
ause the interference fringes are only sampled at a
mall integer number of points. Because our refer-
nce phase goes through the same processing as the
easured phase, it is not surprising that it is more

imilar to our reference than a computer-determined
hase is to an actual, unprocessed phase.
The most important information recoverable from

ig. 9 is that the temporal errors remain at the same
evel for 10-bit and higher resolution. �The intensity
rror appears to bottom out around 8 bits.� A spec-
rometer with 12 bits performs exactly as well as a
pectrometer with 10 bits of resolution. For detec-
ors with resolutions of less than 10 bits, the error
aries inversely with the number of levels in the
etected interferogram. And it appears that good
econstructions are still recoverable from interfero-
rams with resolutions as low as 3 and 4 bits.
In fact, as pointed out previously,21 it is possible to

ecover reasonably precise phase information from a
-bit interferogram. This counterintuitive feature is
ue, in essence, to an interesting benefit of the re-
rieval algorithm. Because the primary facet that
efines the spectral phase is the spacing of the fringes
n the interferogram, a 1-bit interferogram with the
roper fringe spacing will still yield a correct spectral
hase. Of course, to reconstruct the complete pulse,
nowledge of the spectrum is required with high res-
lution. However, in many experimental situations
such as the aligning of stretchers or compressors�,
he spectrum does not change, and the spectral phase
easurement provides the necessary information.
or example, a flat spectral phase indicates an opti-
ized compressor.
Because one is often interested in speeding up the

nversion algorithm and the entire SPIDER recon-
truction,24 a 1-bit interferogram is quite useful.
pecifically, the computer can execute Fourier trans-

orms on an array of 1-bit numbers much faster than
t can on an array of 12-bit numbers. A 1-bit inter-
erogram might also be easier to record with low sig-
al systems by use of high-gain amplifiers such as
valanche photodiode detectors. The problem with
1-bit interferogram is twofold when our rounding

cheme is used; first, all the fringes with an ampli-
ude less than half of the maximum value are lost.
his usually means that almost 50% of the fringes are

ost. Second, especially for an experimental inter-
erogram in which the fringe depth is only slightly
arger than 50%, the apparent width of the fringes
ill vary greatly. This is apparent in Fig. 10 where
dashed horizontal line marks the 1-bit round off.
ear the center of the interferogram the 1-bit fringes
ill alternate between thin and thick.
Instead of simple rounding, another possible way

o generate a 1-bit interferogram is to threshold with
suitable Gaussian. Signal levels above the Gauss-

an become unity, those below become zero. Of
ourse this requires knowledge of the spectrum to
roperly define this Gaussian threshold, but as ar-
ued above, this can be accomplished with one mea-
urement as part of the calibration steps. The
enefits to this rounding scheme are then rather ob-
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ious. Because all the fringes will cross the round-
ng line at their middles, there will be no distortion of
ringe width. A Gaussian threshold for the inter-
erogram of Fig. 10 is shown as the dotted curve
rcing through the center of the interferogram. Fig-
re 11�a� shows the interferogram of Fig. 8 rounded
o a 1-bit interferogram. Figure 11�b� shows the
ame interferogram converted to a 1-bit interfero-
ram by the Gaussian threshold technique. Clearly,

ig. 11. Two techniques used to retrieve 1-bit interferograms:
a� bit rounding and �b� Gaussian thresholding.
his approach yields many more fringes than its bit-
ounded counterpart.

We analyzed the error in 1-bit interferograms cre-
ted by the rounding and thresholding. For each
ype of 1-bit interferogram we measured the average
f 300 trials, 100 with each pulse shape, and all re-
orded under optimal conditions. The results show
he temporal phase error in the thresholded 1-bit
nterferogram to be 75% lower than in the rounded
-bit interferogram!
Equally impressive, the temporal intensity error
as 67% lower in the thresholded 1-bit interferogram

han the rounded 1-bit interferogram. Figure 12
hows a pulse reconstructed from a thresholded 1-bit
nterferogram �like Fig. 11�b�	 as solid curves and a
egular 12-bit interferogram, recorded under optimal
onditions, as dotted curves. These graphs are sur-
risingly close considering that one of them was ob-
ained from a 1-bit interferogram; the temporal
ntensity error for the reconstructed pulse of Fig. 12
s 0.5% and the temporal phase error is 0.02 rad.

. Temporal Error Versus Averaging

n the third part of our experiment we analyzed the
ffect of improving pulse reconstructions by averag-
ng interferograms with high initial noise levels. If
he noise is truly random additive noise, averaging
ultiple noisy interferograms should uncover the

uried signal. Conversely, if there are nonrandom
systematic� effects present in these cases of low SNR
hat were not present in the reference measurement
ase of high SNR, averaging multiple interferograms
ould not improve the signal.
To simplify the experimental procedure, we pro-

eeded in two steps. First, we recorded 1000 inter-
erograms with a noise fraction between 15 and 20%.
econd, we looked at the effects of averaging by
hoosing random interferograms from this pool of
000. We chose one interferogram from this group
t random and calculated its intensity and phase
rrors. We then chose another interferogram at
andom and calculated its intensity and phase errors.
ig. 10. Measured interferogram �solid curve�, 1-bit round off
dashed horizontal line�, and Gaussian threshold �dotted curve�.
ig. 12. Reconstructed pulses from an optimal interferogram
solid curves� and the Gaussian threshold interferogram of Fig.
1�a� �dashed curves�.
1 February 2004 � Vol. 43, No. 4 � APPLIED OPTICS 891
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e repeated this 100 times and averaged the result-
nt intensity and phase errors. This gave us values
or the errors when no averaging is present. Then
e randomly selected two interferograms, averaged

hem, ran them through the inversion algorithm, and
alculated the intensity and phase errors. We did
his 100 times to obtain an average value of the errors
hat exists when two interferograms are averaged
rior to running the inversion algorithm. We pro-
eeded in this manner until we obtained error data
or up to 40 interferograms averaged prior to process-
ng.

Our results appear in Fig. 13 where we plotted the
rrors as a function of interferogram averaging. The
ata are indicated by the circles and the curves indi-
ate least-square fits of the functional form

ε � � � ��
N , (14)

here � represents the baseline error and � is a
caling factor. For the intensity error, � � 0.0055
nd � � 0.0116. For the phase error, � � 0.034 and
� 0.131. These results indicate baseline errors

I � 0.55% and ε� � 0.034 rad, which are slightly
igher but still in reasonable agreement with those

ound in the numerical studies. Considering that
ur noise levels were higher, and our fringe visibility
as limited, these baseline errors represent decent
arks for SPIDER’s performance. Furthermore,

hese results show that, averaging as few as four or
ve noisy signals, we can reduce the reconstruction
rror by 50% or more.
Signal averaging may be important for low-light

pplications when, even at maximum integration
imes, the signal strength is still low. To determine
ust how low a signal could be measured with our
ncarnation of SPIDER, we used neutral-density fil-
ers to reduce our incident beam strength to 1.1 mW.

ith our detector on the highest possible integration
ime, 65535 ms, we recorded an interferogram and
ound that it had a temporal intensity error of only
.9% and a temporal phase error of 0.08 rad. The
oise fraction for this signal was 1.7%; this corre-

ig. 13. Average error in reconstructed pulse intensity �solid cir-
les� and phase �open circles� versus number of interferogram av-
rages. The solid curves are fits to Eq. �14�.
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ponds to a peak intensity of 300 units whereas the
eak intensity under optimal conditions is close to
000 units. A spectrometer with a longer integra-
ion time could record a higher peak intensity and,
onsequently, a lower noise fraction and reconstruc-
ion error.

. Conclusions

e have demonstrated that a real-time, compact,
orking SPIDER device is capable of excellent preci-

ion measurements even in cases of excessive noise.
e have demonstrated the measurement of 50-fs

ulses from a mode-locked Ti:sapphire laser in three
ifferent dispersion regimes and verified many theo-
etical predictions of SPIDER’s performance based on
omputer modeling. We have shown that, even with
0% noise in its signal, SPIDER can reproduce a
ulse’s temporal profile with only 2% error in the
emporal intensity and 0.2 rad of error in the tempo-
al phase. We found that a SPIDER device need not
se a detector with greater than 10 bits of resolution.
e also confirmed that a signal detected with a 1-bit

etector can reconstruct the temporal intensity to
ithin 2% and the temporal phase to within 0.2 rad
f their nominal values. We verified that, when four
ignals are averaged prior to application of SPIDER’s
etrieval algorithm, the error in the reconstructed
emporal phase and intensity drop by approximately
0% from their levels for a single measurement. We
lso found that SPIDER accurately measures pulse
rains with very low average powers; for example,
PIDER determined the temporal intensity and
hase of a pulse train with an average power of only
.1 mW to within 0.9% and 0.08 rad, respectively.
These same types of test could be repeated for more

omplicated pulse shapes, which might prove a
reater challenge to the retrieval algorithm, espe-
ially when noisy. We do not anticipate complex
ulses creating problems, however; computational
tudies have used both simple phases and compli-
ated phases containing quadratic, cubic, and quartic
erms with similar errors reported for all.21,22,29 We
ave reproduced the results for the simple cases eas-

ly and do not anticipate any major problems with
omplicated phases. �The cases we studied were the
nly ones experimentally available to us.� It would
lso be interesting to see the resolution studies per-
ormed with detectors that actually have low resolu-
ions rather than artificially lowering the resolutions
f better detectors. We would especially be inter-
sted to see if it is possible to reproduce the thresh-
lded 1-bit interferogram results using masks or
lters laid directly on the detector array, instead of
arrying it out purely by digital computer processing.

This study confirmed many predictions made by
he numerical simulations investigated previously.
he interesting component, however, is in the appli-
ation to a real laboratory setting. It was not en-
irely clear how the theoretical modeling would
ranslate to a real device with real limitations �for
xample, the finite spectrometer resolution leading to
n interferogram with limited visibility�. Fortu-
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ately, SPIDER appears robust even under extreme
xperimental circumstances.
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