Measuring ultrashort optical pulses in the presence of

noise:

an empirical study of the performance of spectral

phase interferometry for direct electric field reconstruction

Steven Jensen and Matthew E. Anderson

We have measured the performance of a real spectral phase interferometry for direct electric field
reconstruction (SPIDER) apparatus operating under suboptimal conditions. We analyzed the errors in
SPIDER’s measurements of the temporal phases and intensities of 50-fs ultrashort laser pulses as a
function of the additive noise in the detected signal. It was found that SPIDER performs exceptionally
well, particularly in the case of additive noise. Specifically, a signal with 10% noise yields a pulse that
has a mere 2% error in its intensity profile and a phase that differs from the nominal value by 0.2 rad.
Furthermore, we quantified SPIDER’s performance with limited detector resolution and as a function of

signal averaging. © 2004 Optical Society of America

OCIS codes: 320.5540, 320.7100.

1. Introduction

Ultrashort laser pulses, with durations of only tens of
femtoseconds, have enabled exciting research in
many areas of physics. With femtosecond laser
pulses, interferometric second-harmonic spectros-
copy can be performed to identify critical point fea-
tures in modern solid-state materials,! generate x
rays,? initiate fluorescence in studies of biological tis-
sues,? drill holes and cut steel in micromachining
applications,? excite particles in laser-plasma stud-
ies,* and manipulate electron states in quantum con-
trol experiments.? These are only a few examples
from a rapidly growing list of applications that use
ultrashort laser pulses. Of critical importance to
these studies is a firm knowledge of the ultrashort
pulse itself, namely, its amplitude and phase, in ei-
ther the temporal or the frequency domain. Until
recently, this was a daunting task.

Fortunately, in the past decade many different de-
vices have been developed to perform measurements
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on ultrashort pulses. These techniques have moved
well beyond the simple spectrometer and autocorr-
elator,® which yielded the intensity envelopes in the
spectral or temporal domains. Currently, full-field
characterization is possible by way of several differ-
ent methods. By far the most popular technique is
frequency-resolved optical gating (FROG),” a beauti-
ful approach that has borne out many variations (and
inspired a new era of acronymous invention), includ-
ing second-harmonic generation FROG,3* twin recov-
ery of electric field envelopes by use of FROG
(TREEFROG),1° temporal analysis by dispersion of a
pair of light e fields (TADPOLE),* multipulse inter-
ferometric FROG (MI-FROG),'2 and grating-
eliminated no-nonsense observation of ultrafast
incident laser light e fields (GRENOUILLE).13
Other pulse measurement techniques include cross-
phase modulation,* phase and intensity from cross
correlation and spectrum only (PICASO),5 direct op-
tical spectral phase measurement,'6 sonograms,?
spectral interferometry,'® and spectral phase inter-
ferometry for direct electric field reconstruction (SPI-
DER).19.20

SPIDER uniquely combines two advantageous el-
ements found in pulse measurement devices. SPI-
DER requires no moving parts and uses a direct,
noniterative retrieval algorithm that produces a
unique and unambiguous phase and intensity profile
for the measured pulse. In addition, SPIDER has
been shown to be accurate,19-22 fast23.24 (it was re-
cently operated at 1 kHz), and capable of measuring
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single pulses as well as coherent pulse trains.?5
SPIDER has measured pulse durations down to less
than 6 fs,26 it can operate over a wide range of fre-
quencies from infrared to blue, and it costs relatively
little. SPIDER is gaining recognition as an excel-
lent instrument for applications that require the com-
plete characterization of an ultrashort laser pulse.

Of course, understanding the performance of any
metrology instrument is a precursor to using it con-
fidently in a laboratory setting. To this end, several
studies have addressed the performance of SPIDER.
Dorrer investigated the effects of spectrometer cali-
bration error on the performance of SPIDER.2? He
found that problems associated with calibration error
were completely eliminated through use of reference
phase differences. Yeremenko et al. tested several
pulse measurement techniques head to head and sug-
gested new metrics to quantify their performance.28
Anderson et al. performed numerical investigations
on the SPIDER inversion routine to determine its
response to nonideal data.2! In this last study, the
authors programmed computer simulations to deter-
mine how well SPIDER could reconstruct the electric
field of an arbitrary pulse in the presence of noise,
how well SPIDER performed with an input signal of
limited resolution, and what effect averaging had on
the accuracy of the measured field. Anderson et al.
determined the optimum parameters for SPIDER de-
vices and showed that SPIDER was relatively insen-
sitive to noise and the resolution of the detected
signal. They also showed that the accuracy of SPI-
DER improved significantly when several signals
were averaged prior to executing the retrieval algo-
rithm. Dorrer and Walmsley?229 proposed a new
metric to quantify the performance of SPIDER, based
on the rms electric field error, and numerically inves-
tigated this error as a function of signal-to-noise ratio
(SNR). These studies illustrate a simple and phys-
ically reasonable estimate of SPIDER’s ability to re-
construct optical pulses, and the results show good
agreement with the Anderson et al. study.2! All
these studies were numerical, however, and what re-
mains to be seen is how these results will translate to
a real laboratory setting. It is precisely this en-
deavor that we address in this paper.

2. Theoretical Basis

At the heart of SPIDER’s theoretical underpinnings
is spectral-shearing interferometry. The fundamen-
tal principle is as follows. An ultrashort-pulse pair
that has a separation in time T and a separation in
center frequency () is measured with a spectrometer.
The resulting interference pattern, or spectral inter-
ferogram, contains information about the spectral
phase ¢(w) of the original ultrashort pulse. It is pre-
cisely this information that the SPIDER algorithm
retrieves. Combining the spectral phase with the
electric field spectral amplitude E(w) (given by the
square root of the intensity spectrum), the pulse is
uncovered. Namely,

E(w)exp[—id(w)] (1)
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contains the requisite information to completely de-
fine our pulse.

The experimental complexities of SPIDER are de-
tailed in Section 3. For now, however, assume we
have generated two pulses that are temporally and
spectrally sheared and given by

E\(w) = |Ey(0)]exp[ —id(w)],
Ey(w — Q) = [Ex(0 — Q)exp{~i[d(0 — Q) + 1]},
(2)

where 1 represents the temporal delay between
pulses and () represents the spectral shear.

When the two pulses of Egs. (2) spectrally interfere
in the spectrometer, they produce fringes. The in-
tensity of the fringes is dictated by the squared mod-
ulus of the resultant electric field, which equals

S(w) = |Ey(0) + |E(0)|Exo — Q)|expli[¢(w)
— d(w — Q) + o1]} + [E1(0)[|Ex(w — Q)
X exp{—i[d(w) = (0 — Q) + o1]}
+ |Ey(o — Q)2. 3)

A computer records this interferogram and executes
the SPIDER retrieval algorithm. To characterize
the incident pulse, the retrieval algorithm needs to
determine E(w) and ¢(w) for the incident pulse. The
spectral amplitudes of the two pulses are nearly
equal, i.e., Ei(0w) = Ey(w) = E(w), and can easily be
obtained from any spectrographic measurement of
one pulse or even two pulses with a spectral shear of
zero. We typically measure E(w) in a calibration
measurement before calculating ¢(w).

When the SPIDER retrieval algorithm calculates
the phase, it begins with Eq. (3). A Fourier trans-
form of Eq. (3) is given by

HS()} = f " dolexpliot T Ex@)? + | Es(o — Q)]

—%

" f * dofexpliol + DTEx(o)]| Eso

—

— Q)]expli[dp(w) = b0 — D]}

+ f " dolexplio(t — 7 HE: ()| By

—

— Q)lexp{—i[d(w) — d(0 — D]} (4)

The top line of Eq. (4) contains the amplitude infor-
mation (the spectral intensities) that we already
know; the next two lines contain the phase informa-
tion. Lines four and five of Eq. (4) are time-reversed
replicas of the same information; one is centered
about ¢ = +7 and one about ¢ = —71 (the amplitude
information is centered about ¢ = 0). We use a
square window filter to isolate the temporal sideband
containing +7.

Next we take the inverse complex Fourier trans-
form of the filtered signal. This returns the original



interference term, containing +7, minus amplitude
information as

exp{i[d(0) — b(o — Q) + w7]}. (5)

The value for T is measured independently and easily
removed from Eq. (5) with multiplication by
exp(—ioT). This leaves us, as the argument of the
exponential, [¢p(w) — d(w — Q)].

The phase can be extracted from this argument
with a concatenation process. This process samples
the phase at values of the frequency separated by (),
the spectral shear. For spectral shears that are
small relative to the structure of the spectral phase,
direct integration can be used to uncover the spectral

phase. Namely, if we let
() = [d(w) — (o — Q)] = qu;(w), (6)
w
then
L [owa )
d(o) = Q,[ (w)do.

The sampling theorem ensures that, as long as alias-
ing does not occur in our original measurement of the
signal, the calculated phase will be unique. The
spectral phase can now be combined with the spectral
amplitude to yield the complete electric field in the
spectral domain. A simple Fourier transform yields
the electric field in the temporal domain:

1 ©
E(t)=27J |E(w)]expl—ib()lexpiondo. ()

Measuring the spectral phase is the experimentally
challenging component of this endeavor. In Section
3 we detail the experimental implementation.

3. Experimental Methods

A. Precision Versus Accuracy

In our experiment we were interested in how our
measured temporal phase and temporal intensity
changed as experimental conditions varied; e.g., we
wanted to know to what degree the measured tem-
poral intensity deviated from its optimal value if the
noise in the signal increased. This illustrates an
important difference between our experiments and
the numerical simulations. The computer simula-
tions began with an exactly known pulse shape; they
compared this pulse shape to the pulse extracted
from the inversion routine to determine the accuracy
of SPIDER. We have no absolutely known pulse
shape (if we already knew the pulse shape, we would
not need SPIDER!). Rather than use an absolutely
accurate known temporal phase and intensity, we use
a temporal phase and intensity measured under op-
timal conditions as our reference. We define opti-
mal conditions as interferograms recorded with the
highest possible SNR and the averaging of at least 50
signals. This condition is similar to how the SPI-

DER device is calibrated, thus leading to good accu-
racy.?2

The obvious question then arises: Is this a good
way to characterize the input pulse? Namely, will
averaging noisy interferograms ultimately lead to the
correct pulse shape, or are there systematic errors
within the SPIDER algorithm that prevent an accu-
rate reconstruction? According to the numerical stud-
ies, the following appears to be the case. There is a
baseline error for perfectly noiseless interferograms
introduced by the finite resolution of the detection
system. That error amounted to a temporal enve-
lope mismatch of roughly 0.15% and a temporal
phase mismatch of roughly 0.007 rad, both exceed-
ingly minute quantities.

So in the presence of noise, inevitably introduced
by any experimental system, what happens if we av-
erage multiple interferograms? A well-known re-
sult in statistical error analysis says that the
precision of a measured quantity will improve as the
square root of the number of measurements.3° Thus,
averaging multiple noisy interferograms before the
inversion routine should improve the precision of the
reconstructed pulse shape. In the numerical stud-
ies, that was indeed found to be the case. In fact, a
fit to our data for errors versus interferogram aver-
aging has a nearly perfect 1/VN dependence if a
baseline error is included (our estimate of this base-
line error is close to the minimum errors reported
earlier). Thus it appears that, in our experiments,
use of a pulse reconstructed from a high-SNR, mul-
tiply averaged interferogram will suffice as our ref-
erence pulse profile. We then compare the
reconstructed pulse from a noisy interferogram to
this reference pulse. In essence, we are measuring
the precision of SPIDER, relying on the demonstra-
tion of previous studies of SPIDER’s accuracy.®-
23,2527

B. Apparatus

Our experimental apparatus is shown in Fig. 1. Our
light source, a mode-locked Ti:sapphire laser,3! gen-
erated 50-fs pulses at 80 MHz with an average output
power of approximately 100 mW. The other ele-
ments of our system included a collimating telescope,
an external-cavity paired-prism pulse compressor
(for imparting negative chirp to selected pulses),
fused-silica plates (for imparting positive chirp to se-
lected pulses), an automated beam alignment system,
and a SPIDER apparatus. The SPIDER apparatus
followed a design by Dorrer32 except that a type I
B-barium borate crystal was used to eliminate the
need for a polarization-rotating half-wave plate in the
pulse-stretching arm.

The experimental protocol is as follows. An ultra-
short optical pulse enters the SPIDER apparatus
through a pair of alignment pinholes. The incident
pulse strikes an etalon at near-normal incidence.
The two reflections from the front and back sides of
the flat glass constitute two nearly identical copies of
the original pulse (the slight differences in intensity
and chirp do not cause significant problems). Only a
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Fig. 1. SPIDER apparatus (a) An ultrashort laser pulse enters
through a pinhole in the top left corner and strikes an etalon where
it is separated into three pulses. (b) Two of these pulses travel
down one arm of SPIDER to the type I B-barium borate crystal.
(c) The third pulse travels to a pair of diffraction gratings and is
temporally stretched before meeting the pulse pair at the crystal.
(d) The crystal spectrally shears the pulse pair and doubles their
frequencies before they enter the spectrometer. (e) Inside the
spectrometer the pulses spread out and interfere with each other.
(f) The interference pattern, or interferogram, is detected by an
array of photodiode detectors and exported to a computer for math-
ematical analysis. (g) The entire apparatus fits on a bread board
that is 12 in. (31 cm) wide by 18 in. (46 cm) long.

temporal shift, by a time 1, distinguishes the two.
The temporal delay depends on the thickness of the
etalon and the pulse’s angle of incidence. The tem-
poral delay for our SPIDER was 1.77 ps. This cor-
responds to approximately 20 fringes across the
FWHM of our pulse, well within the optimal operat-
ing window as defined in Ref. 21. The light that
propagates through the etalon is sent into a grating-
pair stretcher (actually a compressor in the typical
ultrafast jargon, but equivalent to a stretcher with
opposite sign of chirp). The diffraction gratings
(1200 lines/mm blazed at 750 nm) impart a large
second-order dispersion to this pulse. In our partic-
ular SPIDER the second-order dispersion equaled
348 kfs2.

The pulse pair is mixed with the stretched pulse in
a type I B-barium borate nonlinear crystal, where
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Fig. 2. Measured interferogram with the highest possible SNR.

upconversion takes place. Because we are using a
type I crystal, we employ a noncollinear phase-
matching geometry to minimize doubling of the indi-
vidual pulses. With a pinhole, we can further isolate
the mixed signal. Because the stretched pulse is
long relative to the durations of the individual pulses,
the upconversion process produces two blue pulses
that replicate the phase of the incident red pulse,
separated in time by 7. And because the stretched
pulse is chirped, the two blue pulses have a spectral
shear () between them, given by the relationship be-
tween 7 and the amount of chirp. For our experi-
ments, ) was approximately 1/20 the FWHM
bandwidth of the incident pulse.

The spectrometer then records the interference
pattern between these two pulses. We employed an
Ocean Optics 2000-USB spectrometer with a grating
blazed at 750 nm, 1200 lines/mm, and a 2048 array
of photodiode detectors in which each detector had
12-bit resolution. This spectrometer yielded a spec-
tral resolution of better than 0.25 nm. The spectral
interference pattern of light and dark bands created
by SPIDER, which the spectrometer’s photodiodes
detect as an array of periodically varying intensity
levels, forms an interferogram or record of the inter-
ference. The interferogram contains complete
phase information for the input pulse. An example
of an interferogram obtained with our system is
shown in Fig. 2. The SPIDER algorithm then ex-
tracts the spectral phase information. However, it
should be remembered that the interferogram is
made from blue pulses; our original pulse was near
infrared. Thus we have to convert the information
at frequency o back to frequency w/2. Furthermore,
the spectrometer is linear in wavelength, not fre-
quency, so our algorithm interpolates to convert S(\)
to S(w).

There are also two calibration steps that need to be
performed to complete the pulse reconstruction.
The first is to measure the delay . This is achieved
when we look at the interferogram that results from
the two pulses reflecting off the etalon. Namely, we
block the stretched arm of SPIDER, remove the blue
filter, and let some near-infrared light leak into the



spectrometer. We extract T from the fringe spacing
of the resultant interferogram. This light is also
used to record the fundamental spectrum. By Fou-
rier transforming this interferogram, keeping instead
the ¢ = 0 term, and transforming back, we obtain the
spectrum (and spectral amplitude). These steps are
performed before the real-time SPIDER begins oper-
ating (although there is a way to measure the funda-
mental spectrum dynamically by letting some near-
infrared light leak into the spectrometer.33)

C. Noise Sources

There are two detrimental effects we wish to con-
sider. The first is additive noise primarily due to
electronic noise in the detector. In the case of low-
light levels, this can significantly degrade the quality
of the interferogram. The noisy interferogram can
be modeled by

Snoisy(wi) = Sinput(mi) + Gelec(wi)y (9)

where S, ., (w;) is the resultant noisy interferogram,
; is the optical frequency of pixel element i, S;,,,(w;)
is the normalized ideal (low-noise) interferogram for
the input pulse, and o,.(w;) is the electronic noise
due to the detection system.

The second detrimental effect is due to the finite
(gray-scale) resolution of the detector itself. By ar-
tificially quantizing the resultant interferogram, we
can simulate the effects of a low-bit-depth detector.
The interferogram is modeled by

1 .
Sauan @) = obicaonn _ ) (2797 — 1) 8, purl0:),

(10)

where S ,.ni(w;) is the quantized interferogram, bit
depth is the detector resolution, and the brackets ()
represent rounding to the nearest integer. Because
Sinput(®;) is normalized to a peak value of unity, this
procedure gives us 2Pt 4°Pth grgy_scale levels in our
interferogram.

D. Sample Preparation

To prepare our interferogram samples, we first per-
formed a background subtraction to eliminate the
effects of room light and inconsistencies between bias
levels and sensitivities in the spectrometer’s detec-
tors. We next truncated our data array to 1024 el-
ements; our measured interferograms occupied only
approximately 600 elements of the spectrometer, so
we could easily perform the truncation without losing
any information from the signal. From the 1024-
element interferogram, the SPIDER inversion algo-
rithm extracted a 512-element spectral phase. To
convert the calculated spectral phase and the spectral
intensity (obtained directly in a separate calibration
measurement) into a temporal phase and temporal
intensity required only a simple fast Fourier trans-
form. We padded the spectral phase and intensity
arrays with zeros prior to executing this fast Fourier
transform to ensure that our temporal phase and
intensity arrays had 1024 elements.
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Fig. 3. Five separate measurements of the spectral phase of an
ultrashort laser pulse. (a) The five measurements are indistin-
guishable on this scale. (b) The difference between each individ-
ual phase and the average of all five phases.

E. Intensity and Phase Errors

When operating under high-SNR conditions, the SPI-
DER apparatus processes extremely precise mea-
surements with only minute random errors. For
example, Fig. 3(a) shows five different spectral phase
measurements made by SPIDER of the same pulse
train under optimal conditions; the similarity of these
precise measurements renders them virtually indis-
tinguishable. To see the difference between phases,
Fig. 3(b) is a plot of the difference between each phase
and the average phase, plotted over the bandwidth of
the pulse. The vertical scale indicates the minute
differences between measurements, a testament to
SPIDER’s repeatability.

To quantify the precision of SPIDER we adopt the
method introduced by Fittinghoff et al.34 with a slight
modification following from above. (The rms error
estimate introduced by Dorrer and Walmsley22.29 has
unique benefits; however, we chose the following met-
ric to provide a direct comparison with previous re-
search on both FROG3¢ and SPIDER.21) We
calculated the temporal intensity error €; according to

1 N , 1/2
&= [szl [Iref(tj) - I(tj)] ] ’ (11)
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where N indicates the total number of elements in the
array (1024); j represents the index of the jth pixel in
the array; I,.(t; is the reference temporal intensity
for the jth pixel, as determined by use of optimum
conditions; and [(¢)) is the measured temporal inten-
sity of the jth pixel. The array I(¢;) was normalized
such that it equaled unity at its maximum value.
Therefore €; nearly equals the percent error of the
temporal intensity. Because the SPIDER algorithm
returns a temporal pulse that has no defined absolute
temporal position or peak height, we scaled and
shifted I(¢;) to minimize €;. We accomplished this by
walking the reference and measured temporal inten-
sities past one another in steps of one pixel. At each
step we calculated €;. When the two intensity peaks
were properly aligned, the error was minimized.

We could not calculate a percentage error for the
temporal phase because this would be undefined
when the input phase was zero; instead, we used a
rms error. In addition, the temporal phase error
was undefined for times at which the temporal inten-
sity was zero. Consequently, the rms phase error
was weighted by the temporal intensity such that, for
times when the temporal intensity was nonexistent,
the contribution to the phase error was zero. The
phase error €, was calculated according to

13 2 2 Ve
{N JE;I (t)[breilt)) — d(2))] }

1 N ) 1/2
w2l

acb = ’ (12)

where N equals the total number of elements in the
input array from our detector (1024), j represents the
index of the jth pixel of the detector, I(¢;) is the mea-
sured temporal intensity of the jth pixel, ,q¢;) indi-
cates the reference temporal phase for the jth pixel,
and &(t;) is the measured phase for the jth pixel.
Unlike the percentage error of the temporal intensity,
the error in the temporal phase has units of radians.

4. Experimental Results

We measured the performance in three specific cases;
we analyzed the dependence of the errors on the noise
in the sample, the resolution of the detector, and the
number of signals averaged prior to running the in-
version routine.

In our experiments involving noise, we consider
only additive noise in our system although the nu-
merical study looked at additive and multiplicative
noise. There are two reasons for this. Multiplica-
tive noise, such as that arising from slight differences
in the biasing level of our spectrometer photodiodes,
was easily removed from the experiment and conse-
quently had no effect on our precision; second, there
was no practical way to introduce reproducible, con-
trollable, and quantifiable multiplicative noise into
our experimental system.
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Fig. 4. Three pulses used in this study. (a) The spectral phases
were positive quadratic, flat, and negative quadratic. (b) The
corresponding temporal profiles for positive quadratic (dashed
curve), flat (solid curve), and negative quadratic (dotted curve).
(The positive quadratic pulse actually contained some cubic terms
as well, which leads to the interesting temporal profile.)

A. Temporal Error Versus Noise in the Interferogram

We employed three different readily available pulse
shapes for the noise studies: pulses that were near
the transform limit, pulses that had a positive chirp,
and pulses that had a negative chirp. The near-
transform-limited pulses were obtained directly from
the laser. To create pulses with positive chirp, the
laser pulses were passed through 5.0 cm of fused
silica prior to entering SPIDER. And to create
pulses with negative chirp, the laser pulses were sent
through an external-cavity prism-pair compressor.
The spectral phases for the three different pulse
types are shown in Fig. 4(a), and their temporal in-
tensities are shown in Fig. 4(b).

To accomplish our first task, determining the tem-
poral error as a function of noise in the interferogram,
we first had to determine a relationship between the
real additive noise in our system and the theoretical
noise fraction used in computational studies. In the
numerical study,?! the additive noise was modeled by
(a)(n)/m;, where « is the noise fraction and v, is a
pseudorandom number taken from a Poisson distri-
bution of mean value n. (Note that in the numerical
studies, n = 5.) By setting the rms value of the



50

a0

30

20

Intensity (A.U.)

1 1 1 1 I
385 390 395 400 405 40

Wavelength (nm)

Fig. 5. Measured interferogram with 10% noise.

electronic noise equal to the theoretically modeled
noise,

I‘Ins(o-elec) = rms(z Tll) ’ (13)

we determined the noise fraction «. The noise frac-
tion was inversely proportional to the measured SNR
and scaled linearly with the peak intensity of the
interferogram. A typical interferogram with 10%
noise fraction is shown in Fig. 5. Clearly this ap-
pears as a rather poor-looking interferogram. This
is primarily due to the limited fringe resolution that
makes this noisy interferogram appear to have a
much lower SNR than it actually does.

Having established a protocol for determining the
temporal errors and having defined the noise frac-
tion, the experiment proceeded rather straightfor-
wardly. We began with a maximum SNR and
determined the temporal intensity errors and the
temporal phase errors as the noise was increased.
Initially we increased the noise fraction by decreas-
ing the integration time on the spectrometer. When
the integration time reached its lowest value (3 ms),
we increased the neutral density in our beam to fur-
ther diminish the signal. For each input pulse, we
took 100 measurements at each noise fraction and
report the average of those values. (The error is
averaged over all three pulse shapes.)

The results for this first part of the experiment are
shown in Fig. 6, where we plotted the average inten-
sity and phase errors versus noise fraction. The
noise fraction was increased from 0.001 (low noise) to
0.3 (high noise). The intensity error ranged from
approximately 0.2% at the low end to 3% at the high
end. The phase error ranged from approximately
0.015 rad at the low end to 0.4 rad at the high end.
It also appears that both errors increase roughly as
the square root of the noise fraction.

These results agree well with those found in the
numerical simulations. The slopes of the lines and
relative positions of the intensity and phase errors
are similar. Our results indicate slightly higher
magnitudes of error, however. This is not unex-
pected when a simulated interferogram and an actual
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Fig. 6. Average error in reconstructed temporal intensity (lower
curve) and phase (upper curve) versus noise fraction.

interferogram are compared. The theoretical fringe
depth was almost 100% whereas the actual fringe
depth in our experiment is closer to 60%. This
arises from several factors, including slight differ-
ences in the energies of the interfering pulses, imper-
fect overlap of the interfering pulses, and the finite
width of a detector pixel compared with the width of
a fringe (there are approximately 4.5 pixels per
fringe). Because the experimental fringe depth is
just over half of the peak intensity, the SNR is actu-
ally approximately twice as high as calculated; this
trend is reflected in the data of Fig. 6.

To get a better visual idea of its performance, Fig.
7 shows an actual pulse shape calculated during this
run of experiments. The reference temporal inten-
sity and phase are given by the dashed curves. The
measured temporal intensity and phase with 10%
noise are given by the solid curves. The temporal
intensity error is approximately 2% and the temporal
phase error is approximately 0.04 rad.

B. Temporal Errors Versus Detector Resolution

In the second part of our experiment we looked at the
temporal errors as a function of the resolution of the

Intensity (A.U.)
(pes) aseyd

Time (fs)

Fig. 7. Reconstructed pulse intensity and phase from interfero-
grams recorded under optimum conditions (dashed curves) and
with 10% noise fraction (solid curves).
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Fig. 8. Interferogram rounded to 2 bits (four levels).

photodiode detectors. Because the spectrometer
had a fixed resolution, we artificially lowered the res-
olution by digital processing in the computer accord-
ing to Eq. (10). All interferograms used for rounding
were acquired under optimal conditions. Figure 8
shows an interferogram rounded to four levels. Af-
ter the levels were rounded, the interferograms were
processed by the SPIDER algorithm. The temporal
intensity and phase errors were calculated according
to Egs. (11) and (12).

Again, for each pulse shape at each resolution, 100
trials were run for a total of 300 trials per resolution
level. The average value of the measurements is
shown in Fig. 9. The intensity errors range from
roughly 3% at low quantization to 0.2% at high quan-
tization. The phase errors range from 0.5 rad down
to 0.004 rad. These results are close to those previ-
ously obtained by numerical simulations. However,
in this case, our measured phase errors for high res-
olutions are slightly smaller than those found in the
numerical study. The reason is that the reference
phase and intensity we used are calculated in the
same manner as the measured values; in the compu-
tational study, processed to unprocessed temporal
profiles are compared. Inevitably there will be
small errors in the processed phase, particularly be-

Intensity Error
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Fig. 9. Average error in reconstructed pulse intensity (solid cir-
cles) and phase (open circles) versus quantization bit depth.
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cause the interference fringes are only sampled at a
small integer number of points. Because our refer-
ence phase goes through the same processing as the
measured phase, it is not surprising that it is more
similar to our reference than a computer-determined
phase is to an actual, unprocessed phase.

The most important information recoverable from
Fig. 9 is that the temporal errors remain at the same
level for 10-bit and higher resolution. (The intensity
error appears to bottom out around 8 bits.) A spec-
trometer with 12 bits performs exactly as well as a
spectrometer with 10 bits of resolution. For detec-
tors with resolutions of less than 10 bits, the error
varies inversely with the number of levels in the
detected interferogram. And it appears that good
reconstructions are still recoverable from interfero-
grams with resolutions as low as 3 and 4 bits.

In fact, as pointed out previously,2! it is possible to
recover reasonably precise phase information from a
1-bit interferogram. This counterintuitive feature is
due, in essence, to an interesting benefit of the re-
trieval algorithm. Because the primary facet that
defines the spectral phase is the spacing of the fringes
in the interferogram, a 1-bit interferogram with the
proper fringe spacing will still yield a correct spectral
phase. Of course, to reconstruct the complete pulse,
knowledge of the spectrum is required with high res-
olution. However, in many experimental situations
(such as the aligning of stretchers or compressors),
the spectrum does not change, and the spectral phase
measurement provides the necessary information.
For example, a flat spectral phase indicates an opti-
mized compressor.

Because one is often interested in speeding up the
inversion algorithm and the entire SPIDER recon-
struction,2* a 1-bit interferogram is quite useful.
Specifically, the computer can execute Fourier trans-
forms on an array of 1-bit numbers much faster than
it can on an array of 12-bit numbers. A 1-bit inter-
ferogram might also be easier to record with low sig-
nal systems by use of high-gain amplifiers such as
avalanche photodiode detectors. The problem with
a 1-bit interferogram is twofold when our rounding
scheme is used; first, all the fringes with an ampli-
tude less than half of the maximum value are lost.
This usually means that almost 50% of the fringes are
lost. Second, especially for an experimental inter-
ferogram in which the fringe depth is only slightly
larger than 50%, the apparent width of the fringes
will vary greatly. This is apparent in Fig. 10 where
a dashed horizontal line marks the 1-bit round off.
Near the center of the interferogram the 1-bit fringes
will alternate between thin and thick.

Instead of simple rounding, another possible way
to generate a 1-bit interferogram is to threshold with
a suitable Gaussian. Signal levels above the Gauss-
ian become unity, those below become zero. Of
course this requires knowledge of the spectrum to
properly define this Gaussian threshold, but as ar-
gued above, this can be accomplished with one mea-
surement as part of the calibration steps. The
benefits to this rounding scheme are then rather ob-
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Fig. 10. Measured interferogram (solid curve), 1-bit round off
(dashed horizontal line), and Gaussian threshold (dotted curve).

vious. Because all the fringes will cross the round-
ing line at their middles, there will be no distortion of
fringe width. A Gaussian threshold for the inter-
ferogram of Fig. 10 is shown as the dotted curve
arcing through the center of the interferogram. Fig-
ure 11(a) shows the interferogram of Fig. 8 rounded
to a 1-bit interferogram. Figure 11(b) shows the
same interferogram converted to a 1-bit interfero-
gram by the Gaussian threshold technique. Clearly,
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Fig. 11. Two techniques used to retrieve 1-bit interferograms:
(a) bit rounding and (b) Gaussian thresholding.
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Fig. 12. Reconstructed pulses from an optimal interferogram
(solid curves) and the Gaussian threshold interferogram of Fig.
11(a) (dashed curves).

this approach yields many more fringes than its bit-
rounded counterpart.

We analyzed the error in 1-bit interferograms cre-
ated by the rounding and thresholding. For each
type of 1-bit interferogram we measured the average
of 300 trials, 100 with each pulse shape, and all re-
corded under optimal conditions. The results show
the temporal phase error in the thresholded 1-bit
interferogram to be 75% lower than in the rounded
1-bit interferogram!

Equally impressive, the temporal intensity error
was 67% lower in the thresholded 1-bit interferogram
than the rounded 1-bit interferogram. Figure 12
shows a pulse reconstructed from a thresholded 1-bit
interferogram [like Fig. 11(b)] as solid curves and a
regular 12-bit interferogram, recorded under optimal
conditions, as dotted curves. These graphs are sur-
prisingly close considering that one of them was ob-
tained from a 1-bit interferogram; the temporal
intensity error for the reconstructed pulse of Fig. 12
is 0.5% and the temporal phase error is 0.02 rad.

C. Temporal Error Versus Averaging

In the third part of our experiment we analyzed the
effect of improving pulse reconstructions by averag-
ing interferograms with high initial noise levels. If
the noise is truly random additive noise, averaging
multiple noisy interferograms should uncover the
buried signal. Conversely, if there are nonrandom
(systematic) effects present in these cases of low SNR
that were not present in the reference measurement
case of high SNR, averaging multiple interferograms
would not improve the signal.

To simplify the experimental procedure, we pro-
ceeded in two steps. First, we recorded 1000 inter-
ferograms with a noise fraction between 15 and 20%.
Second, we looked at the effects of averaging by
choosing random interferograms from this pool of
1000. We chose one interferogram from this group
at random and calculated its intensity and phase
errors. We then chose another interferogram at
random and calculated its intensity and phase errors.
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Fig. 13. Average error in reconstructed pulse intensity (solid cir-
cles) and phase (open circles) versus number of interferogram av-
erages. The solid curves are fits to Eq. (14).

We repeated this 100 times and averaged the result-
ant intensity and phase errors. This gave us values
for the errors when no averaging is present. Then
we randomly selected two interferograms, averaged
them, ran them through the inversion algorithm, and
calculated the intensity and phase errors. We did
this 100 times to obtain an average value of the errors
that exists when two interferograms are averaged
prior to running the inversion algorithm. We pro-
ceeded in this manner until we obtained error data
for up to 40 interferograms averaged prior to process-
ing.

Our results appear in Fig. 13 where we plotted the
errors as a function of interferogram averaging. The
data are indicated by the circles and the curves indi-
cate least-square fits of the functional form

e=vy+pB/\N, (14)

where y represents the baseline error and B is a
scaling factor. For the intensity error, y = 0.0055
and B = 0.0116. For the phase error, y = 0.034 and
B = 0.131. These results indicate baseline errors
g ~ 0.55% and ¢, ~ 0.034 rad, which are slightly
higher but still in reasonable agreement with those
found in the numerical studies. Considering that
our noise levels were higher, and our fringe visibility
was limited, these baseline errors represent decent
marks for SPIDER’s performance. Furthermore,
these results show that, averaging as few as four or
five noisy signals, we can reduce the reconstruction
error by 50% or more.

Signal averaging may be important for low-light
applications when, even at maximum integration
times, the signal strength is still low. To determine
just how low a signal could be measured with our
incarnation of SPIDER, we used neutral-density fil-
ters to reduce our incident beam strength to 1.1 mW.
With our detector on the highest possible integration
time, 65535 ms, we recorded an interferogram and
found that it had a temporal intensity error of only
0.9% and a temporal phase error of 0.08 rad. The
noise fraction for this signal was 1.7%; this corre-

892 APPLIED OPTICS / Vol. 43, No. 4 / 1 February 2004

sponds to a peak intensity of 300 units whereas the
peak intensity under optimal conditions is close to
4000 units. A spectrometer with a longer integra-
tion time could record a higher peak intensity and,
consequently, a lower noise fraction and reconstruc-
tion error.

5. Conclusions

We have demonstrated that a real-time, compact,
working SPIDER device is capable of excellent preci-
sion measurements even in cases of excessive noise.
We have demonstrated the measurement of 50-fs
pulses from a mode-locked Ti:sapphire laser in three
different dispersion regimes and verified many theo-
retical predictions of SPIDER’s performance based on
computer modeling. We have shown that, even with
10% noise in its signal, SPIDER can reproduce a
pulse’s temporal profile with only 2% error in the
temporal intensity and 0.2 rad of error in the tempo-
ral phase. We found that a SPIDER device need not
use a detector with greater than 10 bits of resolution.
We also confirmed that a signal detected with a 1-bit
detector can reconstruct the temporal intensity to
within 2% and the temporal phase to within 0.2 rad
of their nominal values. We verified that, when four
signals are averaged prior to application of SPIDER’s
retrieval algorithm, the error in the reconstructed
temporal phase and intensity drop by approximately
50% from their levels for a single measurement. We
also found that SPIDER accurately measures pulse
trains with very low average powers; for example,
SPIDER determined the temporal intensity and
phase of a pulse train with an average power of only
1.1 mW to within 0.9% and 0.08 rad, respectively.
These same types of test could be repeated for more
complicated pulse shapes, which might prove a
greater challenge to the retrieval algorithm, espe-
cially when noisy. We do not anticipate complex
pulses creating problems, however; computational
studies have used both simple phases and compli-
cated phases containing quadratic, cubic, and quartic
terms with similar errors reported for all.21.22.29 We
have reproduced the results for the simple cases eas-
ily and do not anticipate any major problems with
complicated phases. (The cases we studied were the
only ones experimentally available to us.) It would
also be interesting to see the resolution studies per-
formed with detectors that actually have low resolu-
tions rather than artificially lowering the resolutions
of better detectors. We would especially be inter-
ested to see if it is possible to reproduce the thresh-
olded 1-bit interferogram results using masks or
filters laid directly on the detector array, instead of
carrying it out purely by digital computer processing.
This study confirmed many predictions made by
the numerical simulations investigated previously.
The interesting component, however, is in the appli-
cation to a real laboratory setting. It was not en-
tirely clear how the theoretical modeling would
translate to a real device with real limitations (for
example, the finite spectrometer resolution leading to
an interferogram with limited visibility). Fortu-



nately, SPIDER appears robust even under extreme
experimental circumstances.

We gratefully acknowledge Christophe Dorrer for
the SPIDER design, programming assistance, and for
many helpful discussions.
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