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Efficient optical implementation of the Bernstein-Vazirani algorithm
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We implement the Bernstein-Vazirani algorithm on a 15-bit register encoding 215 elements using optics. The
algorithm provides a polynomial speed up for oracle queries. The apparatus is physically efficient in that its
size ~i.e., space-time volume! scales linearly with the size~i.e., number of digits! of the register. We demon-
strate also that the algorithm may be performed not only without entanglement, but also with a computational
basis that does not consist of orthogonal states, and that this coding is the source of the efficiency of the
algorithm.
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Quantum computers can execute certain important c
putational tasks with dramatically fewer resources than co
puters designed according to the laws of classical physics
all cases, the key element missing from the classical
chines is interference. For most algorithms, the spee
available from a quantum computer requires interference
tween correlated states of several particles, or entanglem
This feature of quantum computers is both the most en
matic and the most difficult to achieve in practice.

Entanglement allows the physical size of the compute
scale logarithmically with the number of orthogonal logic
states accessible to the register. Usually these are ma
onto orthogonal space-time modes and the computer is
out by measuring whether a particle occupies a partic
mode or not. Thus a register ofN modes, each containing
single particle in one ofM possible states, can access a H
bert space of dimensionMN. Readout of the register, how
ever, requires onlyM3N detectors, and the volume of th
processor itself~which implements the unitary transforma
tions of the register that represent the algorithm itself! scales
in the same way.

This ability to access a very large direct product Hilb
space has led a number of authors to claim that informat
processing schemes based on single-particle interfer
alone can never be as efficient as those based on mult
ticle interference@1,2#. According to the standard model o
quantum computation, each physical basis state of the sy
represents one logical state. Therefore, anMN dimensional
Hilbert space for a single particle requiresMN orthogonal
space-time modes for the processor, even though the rea
of a system coded in this fashion still requires onlyM3N
separate detectors in anM-ary tree. Because of the scaling
the processor volume with input size, this form of coding c
never be efficient.

Optics provides a straightforward means to simul
quantum logical operations using interference@3,4#, by
means of a coding in which the states of the register co
spond to different modes of the electromagnetic field. Coh

*Electronic address: walmsley@physics.ox.ac.uk
1050-2947/2004/69~1!/010302~4!/$22.50 69 0103
-
-

In
a-
p

e-
nt.
-

o
l
ed
ad
r

-

t
n-
ce
ar-

em

out

n

e

e-
r-

ent superpositions of register states are realized by in
modal interference, and consequently the read
probabilities are independent of the statistical properties
the injected light. A four-element database search was
formed using phase-shifting optical elements by Kwiatet al.
@5#. More recently, Battacharyaet al. described a version o
the Grover algorithm@6,7# with a database of more than 1
elements@8#. Another variation has been demonstrated
Ahn et al. using atoms@9#. In that experiment, phase infor
mation was encoded in the complex amplitudes of electro
Rydberg states and a readout pulse was used to conver
to populations of the states, allowing the ‘‘marked’’ eleme
to be determined. Because it uses single-particle interfere
and unary coding, this procedure is no more efficient tha
classical search implemented using optical waves@10#. The
absence of entanglement in all of these experiments app
to confirm the Jozsa-Ekert hypothesis concerning sca
problems of quantum computers based entirely on inter
ence. It was recently pointed out by Meyer@11#, however,
that at least one quantum algorithm uses interference so
without entanglement at any stage. The circuit is, by
standard measures, efficient, even with this restriction.

It is therefore worthwhile to consider how to impleme
such a circuit, and especially whether there exists a class
wave-based version that demonstrates the same scalin
this paper, we demonstrate such an implementation,
show that extending the notion of classical computation
include classical fields, as opposed to particles, introdu
the interference that provides the speedup shown by this
gorithm.

The Bernstein-Vazirani quantum parity algorithm@12–14#
uses an oracle to determine whether the parity of an inpu
string is the same as that of a string encoded in the ora
Meyer @11# has shown how to use this to execute a search
a database by setting a flag on an ancilla qubit if the tar
element of the database is relatively ‘‘close’’ to the eleme
encoded in the register. Thus ifx is an N-bit binary string,
and b a binary digit, then the Bernstein-Vazirani quantu
parity algorithm is defined by the transformation

ux&ub&°ux&ub% ~xa!&, ~1!
©2004 The American Physical Society02-1
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where % indicates addition modulo 2 and the parenthe
around the scalar product indicate the parity of the prod
~i.e., whether the number of 1’s is even or odd!. A measure-
ment of the ancilla that gives the result 1 indicates that w
the register state and the oracle state are multiplied bitw
the number of 1’s in the resulting string is even. The circ
that executes this algorithm is shown in Fig. 1. At first sig
it would appear that this algorithm relies on entangleme
since it is clear that the controlled-NOT operation can cer-
tainly entangle the register and ancilla. For certain in
states, however, the entanglement disappears.

When the circuit operates on the input sta
u01,02 ,...,0N&u0&b , the first set of Hadamard gates transfo
this to

uc&5
1

&
(
x50

2N21

ux&
1

&
~ u0&b2u1&b). ~2!

The action of the oracle converts this to the state

uc8&5
1

&
(
x50

2N21

~21!~xa!ux&
1

&
~ u0&b2u1&b). ~3!

upon which the final Hadamard gate converts the phase
formation to an amplitude that can be read easily by
particle-counting detector. This state can be written in
form

uc8&5
1

&
~ u0&b2u1&b))

i 51

N
1

&
~ u0& i1~21!aiu1& i), ~4!

which illustrates the lack of entanglement. Moreover, the
string encoded in the oracle appears as a phase shift of
of the qubits independently.

The algorithm has a classical analog that can be use
search for the oracle state. Since the oracle function is
N-bit controlled NOT, then encoding the register with th
N-bit strings~0,...,0,0,1!, ~0,...,0,1,0!, ~0,...,1,0,0!, etc. in se-
quence will give a series of ancilla bits that reveal exactly
oracle state. This classical approach requiresN queries of the
oracle, with N particles ~representingN bits! per query.
Meyer has shown how the quantum version can be use
perform a ‘‘sophisticated search’’ that yields the state of
oracle in a single query, usingN particles encoding qubits
Thus there is a polynomial improvement in identifying t
state of the oracle as compared to the classical search.

The complete absence of entanglement suggests the
cuit can be implemented with a register and ancilla that c

FIG. 1. Circuit implementing the Bernstein-Vazirani algorithm
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tains only uncorrelated particles. Moreover, from the point
view of a search, there is no need to actually implement
controlledNOT, since the state of the register after the ora
is exactly the state encoded in the oracle. This simplifi
considerably the experimental apparatus, though in an im
tant sense it means that the algorithm no longer has a c
sical analog: the oracle cannot be queried classically in a
that would reveal its internal state inN attempts@15#.

The circuit in Fig. 2 executes the Bernstein-Vazirani alg
rithm usingN11 two-state particles. The qubits are encod
using dual-rail logic. Each undergoes a Hadamard trans
mation. The logical 1 rail passes through the oracle, and
logical 0 state of each qubit bypasses the oracle. The or
may or may not shift the phase of the logical 1 rail of ea
qubit depending on the bit string representing the mar
element. Following a second Hadamard transformation,
register and ancilla are read out. The circuit therefore
quires only 2(N11) space-time modes andN11 detectors
in order to search a database with 2N elements. Thus it is
efficient even though it does not make use of entanglemen
any point @16#. Moreover, because no entanglement is
duced by the algorithm, the resources do not increase if e
of the register elements does not contain exactly one qu
Thus the algorithm can be executed with either mixed sta
of undetermined numbers of qubits per mode or even co
ent superpositions of qubit number states.

The circuit illustrated in Fig. 2 can be translated to t
optical arrangement shown in Fig. 3. In this apparatus,
used the two modes labeled by the wave vector and
quency (ki ,v) as representing a logical 1 and 0. The distin

FIG. 2. Circuit of the Bernstein-Vazirani algorithm withN11
two-state particles.

FIG. 3. Optical implementation of the circuit.
2-2
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optical frequenciesv of a spectrally broadband optical puls
constitute distinct qubits, when each mode is occupied b
single photon. In our experiment, the light source was
1-kHz repetition-rate chirped-pulse-amplified laser syst
delivering 50-fs duration pulses at a wavelength near
nm. Each mode of the pulse was therefore in a coherent s
with mean photon number greater than unity.

The pulses were incident on a broadband beamspli
which performed a Hadamard transformation on each pa
modes. For each frequency, one of the output modes, lab
say, s, was directed to a zero-dispersion line with 12
grooves per mm gratings and 50-cm focal length lenses.
combination of the first grating and lens created a Fou
plane, on which the spectral components of the pulse w
spatially dispersed@17#. The other set of output modes, la
beledd, bypassed this arrangement.

The oracle in this setup added a phase shift to a partic
spectral component via a spatial light modulator located
the Fourier plane, in the same way as in an ultrafast pu
shaper@18#. In our case, the device that modifies the pha
was an acousto-optic modulator@19#. A user-controlled
acoustic waveform in a TeO2 crystal induced both amplitud
and phase modulations on the input optical waveform. T
radiation diffracted from the acoustic wave is then sent t
symmetric lens and grating setup in order to recombine
spatially dispersed frequencies of the pulse.

The action of the apparatus on the input state of the qu
follows the analysis of the circuit in Fig. 2. However, w
now show that classical fields can be used to implement
algorithm just as efficiently as unentangled quantum p
ticles. To see this, it is instructive to consider its operation
terms of the field operators for each input modeÊ‘‘0/1’’ (v).
The fields after the first Hadamard transformation are t
Ê‘‘ s/d’’ (v)5Ê‘‘0’’ (v)6Ê‘‘1’’ (v). In this case, the output field
operators are related to those of the input field viaÊs8

(1)(v)

5Ês(v)exp@if(v)1ic(v)#, where the output phase is th
sum of a static phasec~v!, which is independent of the stat
of the modulator, and the oracle-imposed phasef~v!. The
shaped modes are mixed at a second beamsplitter with
unmodified modes. This performs a final Hadamard trans
mation, yielding the field operatorsÊ‘‘0 8/18’’ (v)5Ê‘‘ s8 ’’ (v)
6Ê‘‘ d8 ’’ (v). This transformation converts the phase inform
tion imparted by the oracle to an amplitude suitable for
tection via particle counting.

In our experiment, readout of the marked elements w
performed using spectral interferometry@20#. The output
field is sent to a spectrometer, at the exit port of which is
N-element detector array. The probability that thej th ele-
ment of the detector array registers a photocount isPj

5^Ê(1)(v j )Ê
(2)(v j )&, whereÊ(1)(v j ) is the field operator

at the detector. This is the sum of field operators of the t
modes representing the different logical states of a single

Ê~1 !~v j !5Ê‘‘0’’
~1 !~v j !~12eipaj 1 iv jt!

1Ê‘‘1’’
~1 !~v j !~11eipaj 1 iv jt!, ~5!
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where aj is the j th bit of the marked element, so tha
f(v j )5paj , andt is the temporal delay between the tw
paths.

Only the mean particle number contributes if the init
state is a coherent state in either set of modes and a vac
in the other set, and this is the case most relevant to
classical fields used in our experiments. In both cases, in
mation encoded in the oracle is revealed as modulations
the measured set of photocountsPj .

A typical result of a single run of the apparatus is sho
in Fig. 4. The encoded bits are labeled as 0 s or 1 sacross the
top of the figure, with the phase encoding of the ora
shown as the dashed line. The readout phases for each
tral element are shown as a solid line. Since the encodin
digital, the noise in the phase readout does not lead to
ambiguity in identifying the marked element of the databa

The physical resources required to implement this sea
scale efficiently with register size. The number of mod
required to implement the search is 2N, twice the number of
slots in the oracle. Since these must be orthogonal in sp
time, then a certain minimum volume of space, rough
2Nl3, is required, andN detectors are needed. The numb
of records that can be encoded in the database and uniq
decoded in a single run of the apparatus is 2N.

The number of particles per mode needed depends
on the noise floor of the detectors. If these are themse
quantum-limited, then at leastN log2 N photons are required
per query.

Any information processor based solely on interferen
can be implemented using multiple copies of a single part
@21#. Consider a quantum particle with 2N states. These
states can be grouped in pairs, each pair representing on
of a binary coded string. Thus the particle can encod
singleN-bit string as a superposition ofN of the 2N states.
With these states as the computational basis, the above
cuit will perform in an identical fashion. Clearly, the reado
will reveal just one bit of thisN-bit string. Running the cir-
cuit with N log2 N uncorrelated 2N-state particles simulta
neously means the entire bit string can be read with v
high probability. Therefore, it is possible to use sing
particle interference to implement the Bernstein-Vazirani
gorithm with no increased overhead of the number of p
ticles as compared to the qubit implementation. Note a
that this is also more efficient than the classical parti
implementation. The computational basis in this case cle

FIG. 4. Experimental result of a single run of the apparatus.
2-3
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consists of nonorthogonal states. Readout, however, only
quires discrimination between the diagonal elements of
density matrices representing the different bit strings.

In conclusion, we have shown that the Bernstein-Vazir
quantum parity algorithm can be implemented efficiently
ing classical fields. The reason for this, as pointed out
Meyer, is that the register remains unentangled through
the computation. This means that the speed up has no in
ently quantum character. It remains an open ques
whether the coding scheme on which this algorithm is ba
can be extended to other circuits, and thus enable new w
in which single-particle interference can be used to impro
the computational power of information processors.

Note added in proof.Recently, a similar work was pub
lished @25#, using temporal rather than spectral encoding,
.
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here. The conclusions of that paper are essentially the s
as those of this paper.

We are grateful for enlightening conversations with J.
Eberly, J. A. Jones, P. L. Knight, C. R. Stroud, Jr., and
Wodkiewicz. This work was supported by the Center f
Quantum Information, which is funded by ARO admini
tered MURI Grant No. DAAG-19-99-1-0125. S.W. acknow
edges the support of the Studienstiftung des Deutsc
Volkes. When the experimental component of this work w
performed, the authors were with The Institute of Opti
University of Rochester, Rochester, NY~C.D., M.A., K.B.,
I.A.W.! and The Department of Physics and Astronomy a
the Rochester Theory Center, University of Rochester, Ro
ester, NY~S.W., K.B.!.
e is

ols
n-
ith
ll

the

al
the

t.

t

,

r-
@1# A. Ekert and R. Josza, Rev. Mod. Phys.68, 733 ~1996!.
@2# S. Lloyd, Phys. Rev. A61, 010301~1999!.
@3# N. J. Cerf, C. Adami, and P. G. Kwiat, Phys. Rev. A57, R1477

~1998!.
@4# R. J. C. Spreeuw, Phys. Rev. A63, 062302~2001!.
@5# P. G. Kwiat, J. R. Mitchell, P. D. D. Schwindt, and A. G

White, J. Mod. Opt.47, 257 ~2000!.
@6# L. K. Grover, Phys. Rev. Lett.79, 325 ~1997!.
@7# L. K. Grover, Phys. Rev. Lett.79, 4709~1997!.
@8# N. Bhattacharya, H. B. van Linden van den Heuvell, and R

C. Spreeuw, Phys. Rev. Lett.88, 137901~2002!.
@9# J. Ahn, T. C. Weinacht, and P. H. Bucksbaum, Science287,

463 ~2000!.
@10# C. Dorrer, P. Londero, M. Anderson, S. Wallentowitz, and I.

Walmsley, Paper QWB3, TOPS 57 QELS 2001 Techni
Digest–Postconference Edition~Optical Society of America,
Washington, D.C., 2001!, pp. 149–150.

@11# D. A. Meyer, Phys. Rev. Lett.85, 2014~2000!.
@12# E. Bernstein and U. Vazirani, inProceedings of the 25th An

nual ACM Symposium on the Theory of Computing~ACM,
New York, 1993!, p. 11.

@13# E. Bernstein and U. Vazirani, SIAM J. Comput.26, 1411
~1997!.

@14# B. M. Terhal and J. A. Smolin, Phys. Rev. A58, 1822~1998!.
@15# Almost all of the previous implementations of quantum alg

rithms based on oracles fail this same test@5,8,9,22–24#. It is
an important question whether it makes sense to claim an
.

l

-

-

provement for quantum mechanics in situations where ther
no direct classical equivalent circuit.

@16# The comparison of efficiency is to previous search protoc
using only interference, for which the experimental impleme
tations required 2N space-time modes to search a database w
2N elements. From the point of view of complexity theory, a
of the algorithms provide a polynomial speed up, reducing
number of queries to eitherAN or 1 as compared with the
classical value ofN. However, statements of computation
complexity cannot be divorced from statements about
physical size of the computer.

@17# A. M. Weiner, Rev. Sci. Instrum.71, 1929~2000!.
@18# C. Froehly, B. Colombeau, and M. Vampouille, inProgress in

Optics XX, edited by E. Wolf~Elsevier, Amsterdam, 1983!, pp.
63–153.

@19# J. X. Tull, M. A. Dugan, and W. S. Warren, Adv. Magn. Op
Reson.20, 1 ~1997!.

@20# L. Lepetit, G. Cheriaux, and M. Joffre, J. Opt. Soc. Am. B12,
2467 ~1995!.

@21# S. Wallentowitz, I. A. Walmsley, and J. H. Eberly, e-prin
quant-ph/0009069.

@22# D. Collins, K. W. Kim, and W. C. Holton, Phys. Rev. A58,
R1633~1998!.

@23# D. Collins, K. W. Kim, W. C. Holton, H. Sierzputowska-Gracz
and E. O. Stejskal, Phys. Rev. A62, 022304~2000!.

@24# K. Dorai, Arvind and A. Kurnar, e-print quant-ph/9909067.
@25# E. Brainis, L.-P. Lamoreux, N.J. Cerf, Ph. Emplit, M. Haelte

man, and S. Massar, Phys. Rev. Lett.90, 157902~2003!.
2-4


